Step |
Hyp |
Ref |
Expression |
1 |
|
ltmulneg.a |
|- ( ph -> A e. RR ) |
2 |
|
ltmulneg.b |
|- ( ph -> B e. RR ) |
3 |
|
ltmulneg.c |
|- ( ph -> C e. RR ) |
4 |
|
ltmulneg.n |
|- ( ph -> C < 0 ) |
5 |
3 4
|
negelrpd |
|- ( ph -> -u C e. RR+ ) |
6 |
1 2 5
|
ltmul1d |
|- ( ph -> ( A < B <-> ( A x. -u C ) < ( B x. -u C ) ) ) |
7 |
3
|
renegcld |
|- ( ph -> -u C e. RR ) |
8 |
1 7
|
remulcld |
|- ( ph -> ( A x. -u C ) e. RR ) |
9 |
2 7
|
remulcld |
|- ( ph -> ( B x. -u C ) e. RR ) |
10 |
8 9
|
ltnegd |
|- ( ph -> ( ( A x. -u C ) < ( B x. -u C ) <-> -u ( B x. -u C ) < -u ( A x. -u C ) ) ) |
11 |
2
|
recnd |
|- ( ph -> B e. CC ) |
12 |
7
|
recnd |
|- ( ph -> -u C e. CC ) |
13 |
11 12
|
mulneg2d |
|- ( ph -> ( B x. -u -u C ) = -u ( B x. -u C ) ) |
14 |
3
|
recnd |
|- ( ph -> C e. CC ) |
15 |
14
|
negnegd |
|- ( ph -> -u -u C = C ) |
16 |
15
|
oveq2d |
|- ( ph -> ( B x. -u -u C ) = ( B x. C ) ) |
17 |
13 16
|
eqtr3d |
|- ( ph -> -u ( B x. -u C ) = ( B x. C ) ) |
18 |
1
|
recnd |
|- ( ph -> A e. CC ) |
19 |
18 12
|
mulneg2d |
|- ( ph -> ( A x. -u -u C ) = -u ( A x. -u C ) ) |
20 |
15
|
oveq2d |
|- ( ph -> ( A x. -u -u C ) = ( A x. C ) ) |
21 |
19 20
|
eqtr3d |
|- ( ph -> -u ( A x. -u C ) = ( A x. C ) ) |
22 |
17 21
|
breq12d |
|- ( ph -> ( -u ( B x. -u C ) < -u ( A x. -u C ) <-> ( B x. C ) < ( A x. C ) ) ) |
23 |
6 10 22
|
3bitrd |
|- ( ph -> ( A < B <-> ( B x. C ) < ( A x. C ) ) ) |