Metamath Proof Explorer


Theorem ltnegcon2i

Description: Contraposition of negative in 'less than'. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses lt2.1
|- A e. RR
lt2.2
|- B e. RR
Assertion ltnegcon2i
|- ( A < -u B <-> B < -u A )

Proof

Step Hyp Ref Expression
1 lt2.1
 |-  A e. RR
2 lt2.2
 |-  B e. RR
3 ltnegcon2
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < -u B <-> B < -u A ) )
4 1 2 3 mp2an
 |-  ( A < -u B <-> B < -u A )