Description: Negative of both sides of 'less than'. Theorem I.23 of Apostol p. 20. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | |- ( ph -> A e. RR ) |
|
| ltnegd.2 | |- ( ph -> B e. RR ) |
||
| Assertion | ltnegd | |- ( ph -> ( A < B <-> -u B < -u A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | |- ( ph -> A e. RR ) |
|
| 2 | ltnegd.2 | |- ( ph -> B e. RR ) |
|
| 3 | ltneg | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -u B < -u A ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A < B <-> -u B < -u A ) ) |