Metamath Proof Explorer


Theorem ltnei

Description: 'Less than' implies not equal. (Contributed by NM, 28-Jul-1999)

Ref Expression
Hypotheses lt.1
|- A e. RR
lt.2
|- B e. RR
Assertion ltnei
|- ( A < B -> B =/= A )

Proof

Step Hyp Ref Expression
1 lt.1
 |-  A e. RR
2 lt.2
 |-  B e. RR
3 ltne
 |-  ( ( A e. RR /\ A < B ) -> B =/= A )
4 1 3 mpan
 |-  ( A < B -> B =/= A )