Metamath Proof Explorer


Theorem ltneii

Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015)

Ref Expression
Hypotheses lt.1
|- A e. RR
ltneii.2
|- A < B
Assertion ltneii
|- A =/= B

Proof

Step Hyp Ref Expression
1 lt.1
 |-  A e. RR
2 ltneii.2
 |-  A < B
3 1 2 gtneii
 |-  B =/= A
4 3 necomi
 |-  A =/= B