| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltnelicc.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | ltnelicc.b |  |-  ( ph -> B e. RR* ) | 
						
							| 3 |  | ltnelicc.c |  |-  ( ph -> C e. RR* ) | 
						
							| 4 |  | ltnelicc.clta |  |-  ( ph -> C < A ) | 
						
							| 5 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 6 |  | xrltnle |  |-  ( ( C e. RR* /\ A e. RR* ) -> ( C < A <-> -. A <_ C ) ) | 
						
							| 7 | 3 5 6 | syl2anc |  |-  ( ph -> ( C < A <-> -. A <_ C ) ) | 
						
							| 8 | 4 7 | mpbid |  |-  ( ph -> -. A <_ C ) | 
						
							| 9 | 8 | intnanrd |  |-  ( ph -> -. ( A <_ C /\ C <_ B ) ) | 
						
							| 10 |  | elicc4 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) | 
						
							| 11 | 5 2 3 10 | syl3anc |  |-  ( ph -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) | 
						
							| 12 | 9 11 | mtbird |  |-  ( ph -> -. C e. ( A [,] B ) ) |