Metamath Proof Explorer


Theorem ltnlei

Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005)

Ref Expression
Hypotheses lt.1
|- A e. RR
lt.2
|- B e. RR
Assertion ltnlei
|- ( A < B <-> -. B <_ A )

Proof

Step Hyp Ref Expression
1 lt.1
 |-  A e. RR
2 lt.2
 |-  B e. RR
3 2 1 lenlti
 |-  ( B <_ A <-> -. A < B )
4 3 con2bii
 |-  ( A < B <-> -. B <_ A )