Metamath Proof Explorer


Theorem ltnsym

Description: 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion ltnsym
|- ( ( A e. RR /\ B e. RR ) -> ( A < B -> -. B < A ) )

Proof

Step Hyp Ref Expression
1 axlttri
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) )
2 pm2.46
 |-  ( -. ( A = B \/ B < A ) -> -. B < A )
3 1 2 syl6bi
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B -> -. B < A ) )