Description: 'Less than' is antisymmetric and irreflexive. (Contributed by NM, 13-Aug-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltnsym2 | |- ( ( A e. RR /\ B e. RR ) -> -. ( A < B /\ B < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso | |- < Or RR |
|
| 2 | so2nr | |- ( ( < Or RR /\ ( A e. RR /\ B e. RR ) ) -> -. ( A < B /\ B < A ) ) |
|
| 3 | 1 2 | mpan | |- ( ( A e. RR /\ B e. RR ) -> -. ( A < B /\ B < A ) ) |