Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltd.1 | |- ( ph -> A e. RR ) |
|
ltd.2 | |- ( ph -> B e. RR ) |
||
ltled.1 | |- ( ph -> A < B ) |
||
Assertion | ltnsymd | |- ( ph -> -. B < A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | |- ( ph -> A e. RR ) |
|
2 | ltd.2 | |- ( ph -> B e. RR ) |
|
3 | ltled.1 | |- ( ph -> A < B ) |
|
4 | 1 2 3 | ltled | |- ( ph -> A <_ B ) |
5 | 1 2 | lenltd | |- ( ph -> ( A <_ B <-> -. B < A ) ) |
6 | 4 5 | mpbid | |- ( ph -> -. B < A ) |