Metamath Proof Explorer


Theorem ltnsymd

Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1
|- ( ph -> A e. RR )
ltd.2
|- ( ph -> B e. RR )
ltled.1
|- ( ph -> A < B )
Assertion ltnsymd
|- ( ph -> -. B < A )

Proof

Step Hyp Ref Expression
1 ltd.1
 |-  ( ph -> A e. RR )
2 ltd.2
 |-  ( ph -> B e. RR )
3 ltled.1
 |-  ( ph -> A < B )
4 1 2 3 ltled
 |-  ( ph -> A <_ B )
5 1 2 lenltd
 |-  ( ph -> ( A <_ B <-> -. B < A ) )
6 4 5 mpbid
 |-  ( ph -> -. B < A )