Step |
Hyp |
Ref |
Expression |
1 |
|
odd2np1 |
|- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
2 |
|
halfre |
|- ( 1 / 2 ) e. RR |
3 |
2
|
a1i |
|- ( n e. ZZ -> ( 1 / 2 ) e. RR ) |
4 |
|
1red |
|- ( n e. ZZ -> 1 e. RR ) |
5 |
|
zre |
|- ( n e. ZZ -> n e. RR ) |
6 |
3 4 5
|
3jca |
|- ( n e. ZZ -> ( ( 1 / 2 ) e. RR /\ 1 e. RR /\ n e. RR ) ) |
7 |
6
|
adantr |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( 1 / 2 ) e. RR /\ 1 e. RR /\ n e. RR ) ) |
8 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
9 |
|
axltadd |
|- ( ( ( 1 / 2 ) e. RR /\ 1 e. RR /\ n e. RR ) -> ( ( 1 / 2 ) < 1 -> ( n + ( 1 / 2 ) ) < ( n + 1 ) ) ) |
10 |
7 8 9
|
mpisyl |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( n + ( 1 / 2 ) ) < ( n + 1 ) ) |
11 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
12 |
11
|
adantl |
|- ( ( n e. ZZ /\ M e. ZZ ) -> M e. RR ) |
13 |
5 3
|
readdcld |
|- ( n e. ZZ -> ( n + ( 1 / 2 ) ) e. RR ) |
14 |
13
|
adantr |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( n + ( 1 / 2 ) ) e. RR ) |
15 |
|
peano2z |
|- ( n e. ZZ -> ( n + 1 ) e. ZZ ) |
16 |
15
|
zred |
|- ( n e. ZZ -> ( n + 1 ) e. RR ) |
17 |
16
|
adantr |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( n + 1 ) e. RR ) |
18 |
|
lttr |
|- ( ( M e. RR /\ ( n + ( 1 / 2 ) ) e. RR /\ ( n + 1 ) e. RR ) -> ( ( M < ( n + ( 1 / 2 ) ) /\ ( n + ( 1 / 2 ) ) < ( n + 1 ) ) -> M < ( n + 1 ) ) ) |
19 |
12 14 17 18
|
syl3anc |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( M < ( n + ( 1 / 2 ) ) /\ ( n + ( 1 / 2 ) ) < ( n + 1 ) ) -> M < ( n + 1 ) ) ) |
20 |
10 19
|
mpan2d |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( n + ( 1 / 2 ) ) -> M < ( n + 1 ) ) ) |
21 |
|
zleltp1 |
|- ( ( M e. ZZ /\ n e. ZZ ) -> ( M <_ n <-> M < ( n + 1 ) ) ) |
22 |
21
|
ancoms |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( M <_ n <-> M < ( n + 1 ) ) ) |
23 |
20 22
|
sylibrd |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( n + ( 1 / 2 ) ) -> M <_ n ) ) |
24 |
|
halfgt0 |
|- 0 < ( 1 / 2 ) |
25 |
3 5
|
jca |
|- ( n e. ZZ -> ( ( 1 / 2 ) e. RR /\ n e. RR ) ) |
26 |
25
|
adantr |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( 1 / 2 ) e. RR /\ n e. RR ) ) |
27 |
|
ltaddpos |
|- ( ( ( 1 / 2 ) e. RR /\ n e. RR ) -> ( 0 < ( 1 / 2 ) <-> n < ( n + ( 1 / 2 ) ) ) ) |
28 |
26 27
|
syl |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( 0 < ( 1 / 2 ) <-> n < ( n + ( 1 / 2 ) ) ) ) |
29 |
24 28
|
mpbii |
|- ( ( n e. ZZ /\ M e. ZZ ) -> n < ( n + ( 1 / 2 ) ) ) |
30 |
5
|
adantr |
|- ( ( n e. ZZ /\ M e. ZZ ) -> n e. RR ) |
31 |
|
lelttr |
|- ( ( M e. RR /\ n e. RR /\ ( n + ( 1 / 2 ) ) e. RR ) -> ( ( M <_ n /\ n < ( n + ( 1 / 2 ) ) ) -> M < ( n + ( 1 / 2 ) ) ) ) |
32 |
12 30 14 31
|
syl3anc |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( M <_ n /\ n < ( n + ( 1 / 2 ) ) ) -> M < ( n + ( 1 / 2 ) ) ) ) |
33 |
29 32
|
mpan2d |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( M <_ n -> M < ( n + ( 1 / 2 ) ) ) ) |
34 |
23 33
|
impbid |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( n + ( 1 / 2 ) ) <-> M <_ n ) ) |
35 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
36 |
|
1cnd |
|- ( n e. ZZ -> 1 e. CC ) |
37 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
38 |
37
|
a1i |
|- ( n e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) |
39 |
|
muldivdir |
|- ( ( n e. CC /\ 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 2 x. n ) + 1 ) / 2 ) = ( n + ( 1 / 2 ) ) ) |
40 |
35 36 38 39
|
syl3anc |
|- ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) / 2 ) = ( n + ( 1 / 2 ) ) ) |
41 |
40
|
breq2d |
|- ( n e. ZZ -> ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M < ( n + ( 1 / 2 ) ) ) ) |
42 |
41
|
adantr |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M < ( n + ( 1 / 2 ) ) ) ) |
43 |
|
2z |
|- 2 e. ZZ |
44 |
43
|
a1i |
|- ( n e. ZZ -> 2 e. ZZ ) |
45 |
|
id |
|- ( n e. ZZ -> n e. ZZ ) |
46 |
44 45
|
zmulcld |
|- ( n e. ZZ -> ( 2 x. n ) e. ZZ ) |
47 |
46
|
zcnd |
|- ( n e. ZZ -> ( 2 x. n ) e. CC ) |
48 |
47
|
adantr |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( 2 x. n ) e. CC ) |
49 |
|
pncan1 |
|- ( ( 2 x. n ) e. CC -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) |
50 |
48 49
|
syl |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) |
51 |
50
|
oveq1d |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) = ( ( 2 x. n ) / 2 ) ) |
52 |
|
2cnd |
|- ( n e. ZZ -> 2 e. CC ) |
53 |
|
2ne0 |
|- 2 =/= 0 |
54 |
53
|
a1i |
|- ( n e. ZZ -> 2 =/= 0 ) |
55 |
35 52 54
|
divcan3d |
|- ( n e. ZZ -> ( ( 2 x. n ) / 2 ) = n ) |
56 |
55
|
adantr |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( 2 x. n ) / 2 ) = n ) |
57 |
51 56
|
eqtrd |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) = n ) |
58 |
57
|
breq2d |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( M <_ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) <-> M <_ n ) ) |
59 |
34 42 58
|
3bitr4d |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M <_ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) ) |
60 |
|
oveq1 |
|- ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( 2 x. n ) + 1 ) / 2 ) = ( N / 2 ) ) |
61 |
60
|
breq2d |
|- ( ( ( 2 x. n ) + 1 ) = N -> ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M < ( N / 2 ) ) ) |
62 |
|
oveq1 |
|- ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( N - 1 ) ) |
63 |
62
|
oveq1d |
|- ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) = ( ( N - 1 ) / 2 ) ) |
64 |
63
|
breq2d |
|- ( ( ( 2 x. n ) + 1 ) = N -> ( M <_ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) |
65 |
61 64
|
bibi12d |
|- ( ( ( 2 x. n ) + 1 ) = N -> ( ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M <_ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) <-> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) |
66 |
59 65
|
syl5ibcom |
|- ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = N -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) |
67 |
66
|
ex |
|- ( n e. ZZ -> ( M e. ZZ -> ( ( ( 2 x. n ) + 1 ) = N -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) |
68 |
67
|
adantl |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( M e. ZZ -> ( ( ( 2 x. n ) + 1 ) = N -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) |
69 |
68
|
com23 |
|- ( ( N e. ZZ /\ n e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = N -> ( M e. ZZ -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) |
70 |
69
|
rexlimdva |
|- ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N -> ( M e. ZZ -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) |
71 |
1 70
|
sylbid |
|- ( N e. ZZ -> ( -. 2 || N -> ( M e. ZZ -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) |
72 |
71
|
3imp |
|- ( ( N e. ZZ /\ -. 2 || N /\ M e. ZZ ) -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) |