| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odd2np1 |  |-  ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 2 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 3 | 2 | a1i |  |-  ( n e. ZZ -> ( 1 / 2 ) e. RR ) | 
						
							| 4 |  | 1red |  |-  ( n e. ZZ -> 1 e. RR ) | 
						
							| 5 |  | zre |  |-  ( n e. ZZ -> n e. RR ) | 
						
							| 6 | 3 4 5 | 3jca |  |-  ( n e. ZZ -> ( ( 1 / 2 ) e. RR /\ 1 e. RR /\ n e. RR ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( ( 1 / 2 ) e. RR /\ 1 e. RR /\ n e. RR ) ) | 
						
							| 8 |  | halflt1 |  |-  ( 1 / 2 ) < 1 | 
						
							| 9 |  | axltadd |  |-  ( ( ( 1 / 2 ) e. RR /\ 1 e. RR /\ n e. RR ) -> ( ( 1 / 2 ) < 1 -> ( n + ( 1 / 2 ) ) < ( n + 1 ) ) ) | 
						
							| 10 | 7 8 9 | mpisyl |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( n + ( 1 / 2 ) ) < ( n + 1 ) ) | 
						
							| 11 |  | zre |  |-  ( M e. ZZ -> M e. RR ) | 
						
							| 12 | 11 | adantl |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> M e. RR ) | 
						
							| 13 | 5 3 | readdcld |  |-  ( n e. ZZ -> ( n + ( 1 / 2 ) ) e. RR ) | 
						
							| 14 | 13 | adantr |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( n + ( 1 / 2 ) ) e. RR ) | 
						
							| 15 |  | peano2z |  |-  ( n e. ZZ -> ( n + 1 ) e. ZZ ) | 
						
							| 16 | 15 | zred |  |-  ( n e. ZZ -> ( n + 1 ) e. RR ) | 
						
							| 17 | 16 | adantr |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( n + 1 ) e. RR ) | 
						
							| 18 |  | lttr |  |-  ( ( M e. RR /\ ( n + ( 1 / 2 ) ) e. RR /\ ( n + 1 ) e. RR ) -> ( ( M < ( n + ( 1 / 2 ) ) /\ ( n + ( 1 / 2 ) ) < ( n + 1 ) ) -> M < ( n + 1 ) ) ) | 
						
							| 19 | 12 14 17 18 | syl3anc |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( ( M < ( n + ( 1 / 2 ) ) /\ ( n + ( 1 / 2 ) ) < ( n + 1 ) ) -> M < ( n + 1 ) ) ) | 
						
							| 20 | 10 19 | mpan2d |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( n + ( 1 / 2 ) ) -> M < ( n + 1 ) ) ) | 
						
							| 21 |  | zleltp1 |  |-  ( ( M e. ZZ /\ n e. ZZ ) -> ( M <_ n <-> M < ( n + 1 ) ) ) | 
						
							| 22 | 21 | ancoms |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( M <_ n <-> M < ( n + 1 ) ) ) | 
						
							| 23 | 20 22 | sylibrd |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( n + ( 1 / 2 ) ) -> M <_ n ) ) | 
						
							| 24 |  | halfgt0 |  |-  0 < ( 1 / 2 ) | 
						
							| 25 | 3 5 | jca |  |-  ( n e. ZZ -> ( ( 1 / 2 ) e. RR /\ n e. RR ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( ( 1 / 2 ) e. RR /\ n e. RR ) ) | 
						
							| 27 |  | ltaddpos |  |-  ( ( ( 1 / 2 ) e. RR /\ n e. RR ) -> ( 0 < ( 1 / 2 ) <-> n < ( n + ( 1 / 2 ) ) ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( 0 < ( 1 / 2 ) <-> n < ( n + ( 1 / 2 ) ) ) ) | 
						
							| 29 | 24 28 | mpbii |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> n < ( n + ( 1 / 2 ) ) ) | 
						
							| 30 | 5 | adantr |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> n e. RR ) | 
						
							| 31 |  | lelttr |  |-  ( ( M e. RR /\ n e. RR /\ ( n + ( 1 / 2 ) ) e. RR ) -> ( ( M <_ n /\ n < ( n + ( 1 / 2 ) ) ) -> M < ( n + ( 1 / 2 ) ) ) ) | 
						
							| 32 | 12 30 14 31 | syl3anc |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( ( M <_ n /\ n < ( n + ( 1 / 2 ) ) ) -> M < ( n + ( 1 / 2 ) ) ) ) | 
						
							| 33 | 29 32 | mpan2d |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( M <_ n -> M < ( n + ( 1 / 2 ) ) ) ) | 
						
							| 34 | 23 33 | impbid |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( n + ( 1 / 2 ) ) <-> M <_ n ) ) | 
						
							| 35 |  | zcn |  |-  ( n e. ZZ -> n e. CC ) | 
						
							| 36 |  | 1cnd |  |-  ( n e. ZZ -> 1 e. CC ) | 
						
							| 37 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 38 | 37 | a1i |  |-  ( n e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 39 |  | muldivdir |  |-  ( ( n e. CC /\ 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 2 x. n ) + 1 ) / 2 ) = ( n + ( 1 / 2 ) ) ) | 
						
							| 40 | 35 36 38 39 | syl3anc |  |-  ( n e. ZZ -> ( ( ( 2 x. n ) + 1 ) / 2 ) = ( n + ( 1 / 2 ) ) ) | 
						
							| 41 | 40 | breq2d |  |-  ( n e. ZZ -> ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M < ( n + ( 1 / 2 ) ) ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M < ( n + ( 1 / 2 ) ) ) ) | 
						
							| 43 |  | 2z |  |-  2 e. ZZ | 
						
							| 44 | 43 | a1i |  |-  ( n e. ZZ -> 2 e. ZZ ) | 
						
							| 45 |  | id |  |-  ( n e. ZZ -> n e. ZZ ) | 
						
							| 46 | 44 45 | zmulcld |  |-  ( n e. ZZ -> ( 2 x. n ) e. ZZ ) | 
						
							| 47 | 46 | zcnd |  |-  ( n e. ZZ -> ( 2 x. n ) e. CC ) | 
						
							| 48 | 47 | adantr |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( 2 x. n ) e. CC ) | 
						
							| 49 |  | pncan1 |  |-  ( ( 2 x. n ) e. CC -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( 2 x. n ) ) | 
						
							| 51 | 50 | oveq1d |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) = ( ( 2 x. n ) / 2 ) ) | 
						
							| 52 |  | 2cnd |  |-  ( n e. ZZ -> 2 e. CC ) | 
						
							| 53 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 54 | 53 | a1i |  |-  ( n e. ZZ -> 2 =/= 0 ) | 
						
							| 55 | 35 52 54 | divcan3d |  |-  ( n e. ZZ -> ( ( 2 x. n ) / 2 ) = n ) | 
						
							| 56 | 55 | adantr |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( ( 2 x. n ) / 2 ) = n ) | 
						
							| 57 | 51 56 | eqtrd |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) = n ) | 
						
							| 58 | 57 | breq2d |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( M <_ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) <-> M <_ n ) ) | 
						
							| 59 | 34 42 58 | 3bitr4d |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M <_ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) ) | 
						
							| 60 |  | oveq1 |  |-  ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( 2 x. n ) + 1 ) / 2 ) = ( N / 2 ) ) | 
						
							| 61 | 60 | breq2d |  |-  ( ( ( 2 x. n ) + 1 ) = N -> ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M < ( N / 2 ) ) ) | 
						
							| 62 |  | oveq1 |  |-  ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( 2 x. n ) + 1 ) - 1 ) = ( N - 1 ) ) | 
						
							| 63 | 62 | oveq1d |  |-  ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) = ( ( N - 1 ) / 2 ) ) | 
						
							| 64 | 63 | breq2d |  |-  ( ( ( 2 x. n ) + 1 ) = N -> ( M <_ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 65 | 61 64 | bibi12d |  |-  ( ( ( 2 x. n ) + 1 ) = N -> ( ( M < ( ( ( 2 x. n ) + 1 ) / 2 ) <-> M <_ ( ( ( ( 2 x. n ) + 1 ) - 1 ) / 2 ) ) <-> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 66 | 59 65 | syl5ibcom |  |-  ( ( n e. ZZ /\ M e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = N -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 67 | 66 | ex |  |-  ( n e. ZZ -> ( M e. ZZ -> ( ( ( 2 x. n ) + 1 ) = N -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 68 | 67 | adantl |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> ( M e. ZZ -> ( ( ( 2 x. n ) + 1 ) = N -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 69 | 68 | com23 |  |-  ( ( N e. ZZ /\ n e. ZZ ) -> ( ( ( 2 x. n ) + 1 ) = N -> ( M e. ZZ -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 70 | 69 | rexlimdva |  |-  ( N e. ZZ -> ( E. n e. ZZ ( ( 2 x. n ) + 1 ) = N -> ( M e. ZZ -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 71 | 1 70 | sylbid |  |-  ( N e. ZZ -> ( -. 2 || N -> ( M e. ZZ -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 72 | 71 | 3imp |  |-  ( ( N e. ZZ /\ -. 2 || N /\ M e. ZZ ) -> ( M < ( N / 2 ) <-> M <_ ( ( N - 1 ) / 2 ) ) ) |