Metamath Proof Explorer


Theorem ltpiord

Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion ltpiord
|- ( ( A e. N. /\ B e. N. ) -> ( A  A e. B ) )

Proof

Step Hyp Ref Expression
1 df-lti
 |-  
2 1 breqi
 |-  ( A  A ( _E i^i ( N. X. N. ) ) B )
3 brinxp
 |-  ( ( A e. N. /\ B e. N. ) -> ( A _E B <-> A ( _E i^i ( N. X. N. ) ) B ) )
4 epelg
 |-  ( B e. N. -> ( A _E B <-> A e. B ) )
5 4 adantl
 |-  ( ( A e. N. /\ B e. N. ) -> ( A _E B <-> A e. B ) )
6 3 5 bitr3d
 |-  ( ( A e. N. /\ B e. N. ) -> ( A ( _E i^i ( N. X. N. ) ) B <-> A e. B ) )
7 2 6 syl5bb
 |-  ( ( A e. N. /\ B e. N. ) -> ( A  A e. B ) )