| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- +oo = +oo |
| 2 |
|
orc |
|- ( ( A e. RR /\ +oo = +oo ) -> ( ( A e. RR /\ +oo = +oo ) \/ ( A = -oo /\ +oo e. RR ) ) ) |
| 3 |
1 2
|
mpan2 |
|- ( A e. RR -> ( ( A e. RR /\ +oo = +oo ) \/ ( A = -oo /\ +oo e. RR ) ) ) |
| 4 |
3
|
olcd |
|- ( A e. RR -> ( ( ( ( A e. RR /\ +oo e. RR ) /\ A |
| 5 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 6 |
|
pnfxr |
|- +oo e. RR* |
| 7 |
|
ltxr |
|- ( ( A e. RR* /\ +oo e. RR* ) -> ( A < +oo <-> ( ( ( ( A e. RR /\ +oo e. RR ) /\ A |
| 8 |
5 6 7
|
sylancl |
|- ( A e. RR -> ( A < +oo <-> ( ( ( ( A e. RR /\ +oo e. RR ) /\ A |
| 9 |
4 8
|
mpbird |
|- ( A e. RR -> A < +oo ) |