Description: Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ltpnfd.a | |- ( ph -> A e. RR ) |
|
Assertion | ltpnfd | |- ( ph -> A < +oo ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltpnfd.a | |- ( ph -> A e. RR ) |
|
2 | ltpnf | |- ( A e. RR -> A < +oo ) |
|
3 | 1 2 | syl | |- ( ph -> A < +oo ) |