Step |
Hyp |
Ref |
Expression |
1 |
|
ltpsrpr.3 |
|- C e. R. |
2 |
|
ltasr |
|- ( C e. R. -> ( [ <. A , 1P >. ] ~R . ] ~R <-> ( C +R [ <. A , 1P >. ] ~R ) . ] ~R ) ) ) |
3 |
1 2
|
ax-mp |
|- ( [ <. A , 1P >. ] ~R . ] ~R <-> ( C +R [ <. A , 1P >. ] ~R ) . ] ~R ) ) |
4 |
|
addcompr |
|- ( A +P. 1P ) = ( 1P +P. A ) |
5 |
4
|
breq1i |
|- ( ( A +P. 1P ) ( 1P +P. A ) |
6 |
|
ltsrpr |
|- ( [ <. A , 1P >. ] ~R . ] ~R <-> ( A +P. 1P ) |
7 |
|
1pr |
|- 1P e. P. |
8 |
|
ltapr |
|- ( 1P e. P. -> ( A ( 1P +P. A ) |
9 |
7 8
|
ax-mp |
|- ( A ( 1P +P. A ) |
10 |
5 6 9
|
3bitr4i |
|- ( [ <. A , 1P >. ] ~R . ] ~R <-> A |
11 |
3 10
|
bitr3i |
|- ( ( C +R [ <. A , 1P >. ] ~R ) . ] ~R ) <-> A |