Metamath Proof Explorer


Theorem ltpsrpr

Description: Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis ltpsrpr.3
|- C e. R.
Assertion ltpsrpr
|- ( ( C +R [ <. A , 1P >. ] ~R ) . ] ~R ) <-> A 


Proof

Step Hyp Ref Expression
1 ltpsrpr.3
 |-  C e. R.
2 ltasr
 |-  ( C e. R. -> ( [ <. A , 1P >. ] ~R . ] ~R <-> ( C +R [ <. A , 1P >. ] ~R ) . ] ~R ) ) )
3 1 2 ax-mp
 |-  ( [ <. A , 1P >. ] ~R . ] ~R <-> ( C +R [ <. A , 1P >. ] ~R ) . ] ~R ) )
4 addcompr
 |-  ( A +P. 1P ) = ( 1P +P. A )
5 4 breq1i
 |-  ( ( A +P. 1P ) 

( 1P +P. A )

6 ltsrpr
 |-  ( [ <. A , 1P >. ] ~R . ] ~R <-> ( A +P. 1P ) 

7 1pr
 |-  1P e. P.
8 ltapr
 |-  ( 1P e. P. -> ( A 

( 1P +P. A )

9 7 8 ax-mp
 |-  ( A 

( 1P +P. A )

10 5 6 9 3bitr4i
 |-  ( [ <. A , 1P >. ] ~R . ] ~R <-> A 

11 3 10 bitr3i
 |-  ( ( C +R [ <. A , 1P >. ] ~R ) . ] ~R ) <-> A