Step |
Hyp |
Ref |
Expression |
1 |
|
gt0ne0 |
|- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
2 |
|
rereccl |
|- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |
3 |
1 2
|
syldan |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
4 |
|
recgt0 |
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) |
5 |
3 4
|
jca |
|- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / A ) e. RR /\ 0 < ( 1 / A ) ) ) |
6 |
|
ltrec |
|- ( ( ( ( 1 / A ) e. RR /\ 0 < ( 1 / A ) ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / A ) < B <-> ( 1 / B ) < ( 1 / ( 1 / A ) ) ) ) |
7 |
5 6
|
sylan |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / A ) < B <-> ( 1 / B ) < ( 1 / ( 1 / A ) ) ) ) |
8 |
|
recn |
|- ( A e. RR -> A e. CC ) |
9 |
|
recrec |
|- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / ( 1 / A ) ) = A ) |
10 |
8 9
|
sylan |
|- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / ( 1 / A ) ) = A ) |
11 |
1 10
|
syldan |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 / ( 1 / A ) ) = A ) |
12 |
11
|
adantr |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 / ( 1 / A ) ) = A ) |
13 |
12
|
breq2d |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / B ) < ( 1 / ( 1 / A ) ) <-> ( 1 / B ) < A ) ) |
14 |
7 13
|
bitrd |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / A ) < B <-> ( 1 / B ) < A ) ) |