Description: Reciprocal swap in a 'less than' relation. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| rpaddcld.1 | |- ( ph -> B e. RR+ ) |
||
| ltrec1d.2 | |- ( ph -> ( 1 / A ) < B ) |
||
| Assertion | ltrec1d | |- ( ph -> ( 1 / B ) < A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| 2 | rpaddcld.1 | |- ( ph -> B e. RR+ ) |
|
| 3 | ltrec1d.2 | |- ( ph -> ( 1 / A ) < B ) |
|
| 4 | 1 | rpregt0d | |- ( ph -> ( A e. RR /\ 0 < A ) ) |
| 5 | 2 | rpregt0d | |- ( ph -> ( B e. RR /\ 0 < B ) ) |
| 6 | ltrec1 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / A ) < B <-> ( 1 / B ) < A ) ) |
|
| 7 | 4 5 6 | syl2anc | |- ( ph -> ( ( 1 / A ) < B <-> ( 1 / B ) < A ) ) |
| 8 | 3 7 | mpbid | |- ( ph -> ( 1 / B ) < A ) |