Description: The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltplus1.1 | |- A e. RR |
|
prodgt0.2 | |- B e. RR |
||
Assertion | ltreci | |- ( ( 0 < A /\ 0 < B ) -> ( A < B <-> ( 1 / B ) < ( 1 / A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltplus1.1 | |- A e. RR |
|
2 | prodgt0.2 | |- B e. RR |
|
3 | ltrec | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A < B <-> ( 1 / B ) < ( 1 / A ) ) ) |
|
4 | 2 3 | mpanr1 | |- ( ( ( A e. RR /\ 0 < A ) /\ 0 < B ) -> ( A < B <-> ( 1 / B ) < ( 1 / A ) ) ) |
5 | 1 4 | mpanl1 | |- ( ( 0 < A /\ 0 < B ) -> ( A < B <-> ( 1 / B ) < ( 1 / A ) ) ) |