Metamath Proof Explorer


Theorem ltrecii

Description: The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999)

Ref Expression
Hypotheses ltplus1.1
|- A e. RR
prodgt0.2
|- B e. RR
ltreci.3
|- 0 < A
ltreci.4
|- 0 < B
Assertion ltrecii
|- ( A < B <-> ( 1 / B ) < ( 1 / A ) )

Proof

Step Hyp Ref Expression
1 ltplus1.1
 |-  A e. RR
2 prodgt0.2
 |-  B e. RR
3 ltreci.3
 |-  0 < A
4 ltreci.4
 |-  0 < B
5 1 2 ltreci
 |-  ( ( 0 < A /\ 0 < B ) -> ( A < B <-> ( 1 / B ) < ( 1 / A ) ) )
6 3 4 5 mp2an
 |-  ( A < B <-> ( 1 / B ) < ( 1 / A ) )