Step |
Hyp |
Ref |
Expression |
1 |
|
df-ltxr |
|- < = ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
2 |
|
df-3an |
|- ( ( x e. RR /\ y e. RR /\ x ( ( x e. RR /\ y e. RR ) /\ x |
3 |
2
|
opabbii |
|- { <. x , y >. | ( x e. RR /\ y e. RR /\ x . | ( ( x e. RR /\ y e. RR ) /\ x |
4 |
|
opabssxp |
|- { <. x , y >. | ( ( x e. RR /\ y e. RR ) /\ x |
5 |
3 4
|
eqsstri |
|- { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
6 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
7 |
5 6
|
sstri |
|- { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
8 |
|
ressxr |
|- RR C_ RR* |
9 |
|
snsspr2 |
|- { -oo } C_ { +oo , -oo } |
10 |
|
ssun2 |
|- { +oo , -oo } C_ ( RR u. { +oo , -oo } ) |
11 |
|
df-xr |
|- RR* = ( RR u. { +oo , -oo } ) |
12 |
10 11
|
sseqtrri |
|- { +oo , -oo } C_ RR* |
13 |
9 12
|
sstri |
|- { -oo } C_ RR* |
14 |
8 13
|
unssi |
|- ( RR u. { -oo } ) C_ RR* |
15 |
|
snsspr1 |
|- { +oo } C_ { +oo , -oo } |
16 |
15 12
|
sstri |
|- { +oo } C_ RR* |
17 |
|
xpss12 |
|- ( ( ( RR u. { -oo } ) C_ RR* /\ { +oo } C_ RR* ) -> ( ( RR u. { -oo } ) X. { +oo } ) C_ ( RR* X. RR* ) ) |
18 |
14 16 17
|
mp2an |
|- ( ( RR u. { -oo } ) X. { +oo } ) C_ ( RR* X. RR* ) |
19 |
|
xpss12 |
|- ( ( { -oo } C_ RR* /\ RR C_ RR* ) -> ( { -oo } X. RR ) C_ ( RR* X. RR* ) ) |
20 |
13 8 19
|
mp2an |
|- ( { -oo } X. RR ) C_ ( RR* X. RR* ) |
21 |
18 20
|
unssi |
|- ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) C_ ( RR* X. RR* ) |
22 |
7 21
|
unssi |
|- ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
23 |
1 22
|
eqsstri |
|- < C_ ( RR* X. RR* ) |