Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
|- ( b e. NN0 -> b e. ZZ ) |
2 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
3 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmX b ) e. NN0 ) |
4 |
1 3
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX b ) e. NN0 ) |
5 |
4
|
nn0red |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX b ) e. RR ) |
6 |
|
eluzelre |
|- ( A e. ( ZZ>= ` 2 ) -> A e. RR ) |
7 |
6
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> A e. RR ) |
8 |
5 7
|
remulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A rmX b ) x. A ) e. RR ) |
9 |
1
|
peano2zd |
|- ( b e. NN0 -> ( b + 1 ) e. ZZ ) |
10 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( b + 1 ) e. ZZ ) -> ( A rmX ( b + 1 ) ) e. NN0 ) |
11 |
9 10
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX ( b + 1 ) ) e. NN0 ) |
12 |
11
|
nn0red |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX ( b + 1 ) ) e. RR ) |
13 |
|
eluz2b2 |
|- ( A e. ( ZZ>= ` 2 ) <-> ( A e. NN /\ 1 < A ) ) |
14 |
13
|
simprbi |
|- ( A e. ( ZZ>= ` 2 ) -> 1 < A ) |
15 |
14
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 1 < A ) |
16 |
|
rmxypos |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) |
17 |
16
|
simpld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 0 < ( A rmX b ) ) |
18 |
|
ltmulgt11 |
|- ( ( ( A rmX b ) e. RR /\ A e. RR /\ 0 < ( A rmX b ) ) -> ( 1 < A <-> ( A rmX b ) < ( ( A rmX b ) x. A ) ) ) |
19 |
5 7 17 18
|
syl3anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( 1 < A <-> ( A rmX b ) < ( ( A rmX b ) x. A ) ) ) |
20 |
15 19
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX b ) < ( ( A rmX b ) x. A ) ) |
21 |
|
rmspecnonsq |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) |
22 |
21
|
eldifad |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN ) |
23 |
22
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A ^ 2 ) - 1 ) e. NN ) |
24 |
23
|
nnred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A ^ 2 ) - 1 ) e. RR ) |
25 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
26 |
25
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY b ) e. ZZ ) |
27 |
1 26
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) e. ZZ ) |
28 |
27
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) e. RR ) |
29 |
23
|
nnnn0d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A ^ 2 ) - 1 ) e. NN0 ) |
30 |
29
|
nn0ge0d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 0 <_ ( ( A ^ 2 ) - 1 ) ) |
31 |
16
|
simprd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 0 <_ ( A rmY b ) ) |
32 |
24 28 30 31
|
mulge0d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 0 <_ ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) |
33 |
24 28
|
remulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) e. RR ) |
34 |
8 33
|
addge01d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( 0 <_ ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) <-> ( ( A rmX b ) x. A ) <_ ( ( ( A rmX b ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) ) ) |
35 |
32 34
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A rmX b ) x. A ) <_ ( ( ( A rmX b ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) ) |
36 |
|
rmxp1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmX ( b + 1 ) ) = ( ( ( A rmX b ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) ) |
37 |
1 36
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX ( b + 1 ) ) = ( ( ( A rmX b ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) ) |
38 |
35 37
|
breqtrrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A rmX b ) x. A ) <_ ( A rmX ( b + 1 ) ) ) |
39 |
5 8 12 20 38
|
ltletrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX b ) < ( A rmX ( b + 1 ) ) ) |
40 |
|
nn0z |
|- ( a e. NN0 -> a e. ZZ ) |
41 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmX a ) e. NN0 ) |
42 |
40 41
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( A rmX a ) e. NN0 ) |
43 |
42
|
nn0red |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( A rmX a ) e. RR ) |
44 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
45 |
|
oveq2 |
|- ( a = ( b + 1 ) -> ( A rmX a ) = ( A rmX ( b + 1 ) ) ) |
46 |
|
oveq2 |
|- ( a = b -> ( A rmX a ) = ( A rmX b ) ) |
47 |
|
oveq2 |
|- ( a = M -> ( A rmX a ) = ( A rmX M ) ) |
48 |
|
oveq2 |
|- ( a = N -> ( A rmX a ) = ( A rmX N ) ) |
49 |
39 43 44 45 46 47 48
|
monotuz |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M < N <-> ( A rmX M ) < ( A rmX N ) ) ) |
50 |
49
|
3impb |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. NN0 /\ N e. NN0 ) -> ( M < N <-> ( A rmX M ) < ( A rmX N ) ) ) |