Step |
Hyp |
Ref |
Expression |
1 |
|
ltrnel.l |
|- .<_ = ( le ` K ) |
2 |
|
ltrnel.a |
|- A = ( Atoms ` K ) |
3 |
|
ltrnel.h |
|- H = ( LHyp ` K ) |
4 |
|
ltrnel.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> P e. A ) |
6 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
7 |
6 2
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
8 |
6 2 3 4
|
ltrnatb |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. ( Base ` K ) ) -> ( P e. A <-> ( F ` P ) e. A ) ) |
9 |
7 8
|
syl3an3 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( P e. A <-> ( F ` P ) e. A ) ) |
10 |
5 9
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( F ` P ) e. A ) |