| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ltrn2eq.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							ltrn2eq.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							ltrn2eq.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							ltrn2eq.t | 
							 |-  T = ( ( LTrn ` K ) ` W )  | 
						
						
							| 5 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( F ` P ) =/= P /\ ( F ` Q ) = Q ) ) -> ( F ` Q ) = Q )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( F ` P ) =/= P /\ ( F ` Q ) = Q ) ) /\ -. Q .<_ W ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 7 | 
							
								
							 | 
							simpl21 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( F ` P ) =/= P /\ ( F ` Q ) = Q ) ) /\ -. Q .<_ W ) -> F e. T )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl22 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( F ` P ) =/= P /\ ( F ` Q ) = Q ) ) /\ -. Q .<_ W ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpl23 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( F ` P ) =/= P /\ ( F ` Q ) = Q ) ) /\ -. Q .<_ W ) -> Q e. A )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( F ` P ) =/= P /\ ( F ` Q ) = Q ) ) /\ -. Q .<_ W ) -> -. Q .<_ W )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							jca | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( F ` P ) =/= P /\ ( F ` Q ) = Q ) ) /\ -. Q .<_ W ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simpl3l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( F ` P ) =/= P /\ ( F ` Q ) = Q ) ) /\ -. Q .<_ W ) -> ( F ` P ) =/= P )  | 
						
						
							| 13 | 
							
								1 2 3 4
							 | 
							ltrnatneq | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F ` P ) =/= P ) -> ( F ` Q ) =/= Q )  | 
						
						
							| 14 | 
							
								6 7 8 11 12 13
							 | 
							syl131anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( F ` P ) =/= P /\ ( F ` Q ) = Q ) ) /\ -. Q .<_ W ) -> ( F ` Q ) =/= Q )  | 
						
						
							| 15 | 
							
								14
							 | 
							ex | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( F ` P ) =/= P /\ ( F ` Q ) = Q ) ) -> ( -. Q .<_ W -> ( F ` Q ) =/= Q ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							necon4bd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( F ` P ) =/= P /\ ( F ` Q ) = Q ) ) -> ( ( F ` Q ) = Q -> Q .<_ W ) )  | 
						
						
							| 17 | 
							
								5 16
							 | 
							mpd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( P e. A /\ -. P .<_ W ) /\ Q e. A ) /\ ( ( F ` P ) =/= P /\ ( F ` Q ) = Q ) ) -> Q .<_ W )  |