| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrnel.l |
|- .<_ = ( le ` K ) |
| 2 |
|
ltrnel.a |
|- A = ( Atoms ` K ) |
| 3 |
|
ltrnel.h |
|- H = ( LHyp ` K ) |
| 4 |
|
ltrnel.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> P e. A ) |
| 6 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 7 |
6 2
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 8 |
6 2 3 4
|
ltrncnvatb |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. ( Base ` K ) ) -> ( P e. A <-> ( `' F ` P ) e. A ) ) |
| 9 |
7 8
|
syl3an3 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( P e. A <-> ( `' F ` P ) e. A ) ) |
| 10 |
5 9
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( `' F ` P ) e. A ) |