Step |
Hyp |
Ref |
Expression |
1 |
|
ltrn1o.b |
|- B = ( Base ` K ) |
2 |
|
ltrn1o.h |
|- H = ( LHyp ` K ) |
3 |
|
ltrn1o.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> F =/= ( _I |` B ) ) |
5 |
1 2 3
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> F : B -1-1-onto-> B ) |
6 |
5
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> F : B -1-1-onto-> B ) |
7 |
|
f1orel |
|- ( F : B -1-1-onto-> B -> Rel F ) |
8 |
6 7
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> Rel F ) |
9 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
10 |
8 9
|
sylib |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> `' `' F = F ) |
11 |
|
cnveq |
|- ( `' F = ( _I |` B ) -> `' `' F = `' ( _I |` B ) ) |
12 |
10 11
|
sylan9req |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) /\ `' F = ( _I |` B ) ) -> F = `' ( _I |` B ) ) |
13 |
|
cnvresid |
|- `' ( _I |` B ) = ( _I |` B ) |
14 |
12 13
|
eqtrdi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) /\ `' F = ( _I |` B ) ) -> F = ( _I |` B ) ) |
15 |
14
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> ( `' F = ( _I |` B ) -> F = ( _I |` B ) ) ) |
16 |
15
|
necon3d |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> ( F =/= ( _I |` B ) -> `' F =/= ( _I |` B ) ) ) |
17 |
4 16
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> `' F =/= ( _I |` B ) ) |