| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrniotaval.l |
|- .<_ = ( le ` K ) |
| 2 |
|
ltrniotaval.a |
|- A = ( Atoms ` K ) |
| 3 |
|
ltrniotaval.h |
|- H = ( LHyp ` K ) |
| 4 |
|
ltrniotaval.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
ltrniotaval.f |
|- F = ( iota_ f e. T ( f ` P ) = Q ) |
| 6 |
1 2 3 4
|
cdleme |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> E! f e. T ( f ` P ) = Q ) |
| 7 |
|
nfriota1 |
|- F/_ f ( iota_ f e. T ( f ` P ) = Q ) |
| 8 |
5 7
|
nfcxfr |
|- F/_ f F |
| 9 |
|
nfcv |
|- F/_ f P |
| 10 |
8 9
|
nffv |
|- F/_ f ( F ` P ) |
| 11 |
10
|
nfeq1 |
|- F/ f ( F ` P ) = Q |
| 12 |
|
fveq1 |
|- ( f = F -> ( f ` P ) = ( F ` P ) ) |
| 13 |
12
|
eqeq1d |
|- ( f = F -> ( ( f ` P ) = Q <-> ( F ` P ) = Q ) ) |
| 14 |
11 5 13
|
riotaprop |
|- ( E! f e. T ( f ` P ) = Q -> ( F e. T /\ ( F ` P ) = Q ) ) |
| 15 |
14
|
simprd |
|- ( E! f e. T ( f ` P ) = Q -> ( F ` P ) = Q ) |
| 16 |
6 15
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( F ` P ) = Q ) |