Description: A lattice translation is a lattice automorphism. (Contributed by NM, 20-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltrnlaut.h | |- H = ( LHyp ` K ) |
|
| ltrnlaut.i | |- I = ( LAut ` K ) |
||
| ltrnlaut.t | |- T = ( ( LTrn ` K ) ` W ) |
||
| Assertion | ltrnlaut | |- ( ( ( K e. V /\ W e. H ) /\ F e. T ) -> F e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrnlaut.h | |- H = ( LHyp ` K ) |
|
| 2 | ltrnlaut.i | |- I = ( LAut ` K ) |
|
| 3 | ltrnlaut.t | |- T = ( ( LTrn ` K ) ` W ) |
|
| 4 | eqid | |- ( ( LDil ` K ) ` W ) = ( ( LDil ` K ) ` W ) |
|
| 5 | 1 4 3 | ltrnldil | |- ( ( ( K e. V /\ W e. H ) /\ F e. T ) -> F e. ( ( LDil ` K ) ` W ) ) |
| 6 | 1 2 4 | ldillaut | |- ( ( ( K e. V /\ W e. H ) /\ F e. ( ( LDil ` K ) ` W ) ) -> F e. I ) |
| 7 | 5 6 | syldan | |- ( ( ( K e. V /\ W e. H ) /\ F e. T ) -> F e. I ) |