Step |
Hyp |
Ref |
Expression |
1 |
|
ltrnmw.l |
|- .<_ = ( le ` K ) |
2 |
|
ltrnmw.m |
|- ./\ = ( meet ` K ) |
3 |
|
ltrnmw.z |
|- .0. = ( 0. ` K ) |
4 |
|
ltrnmw.a |
|- A = ( Atoms ` K ) |
5 |
|
ltrnmw.h |
|- H = ( LHyp ` K ) |
6 |
|
ltrnmw.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
8 |
1 4 5 6
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
9 |
1 2 3 4 5
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) -> ( ( F ` P ) ./\ W ) = .0. ) |
10 |
7 8 9
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) ./\ W ) = .0. ) |