Metamath Proof Explorer


Theorem ltrnmw

Description: Property of lattice translation value. Remark below Lemma B in Crawley p. 112. TODO: Can this be used in more places? (Contributed by NM, 20-May-2012) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses ltrnmw.l
|- .<_ = ( le ` K )
ltrnmw.m
|- ./\ = ( meet ` K )
ltrnmw.z
|- .0. = ( 0. ` K )
ltrnmw.a
|- A = ( Atoms ` K )
ltrnmw.h
|- H = ( LHyp ` K )
ltrnmw.t
|- T = ( ( LTrn ` K ) ` W )
Assertion ltrnmw
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) ./\ W ) = .0. )

Proof

Step Hyp Ref Expression
1 ltrnmw.l
 |-  .<_ = ( le ` K )
2 ltrnmw.m
 |-  ./\ = ( meet ` K )
3 ltrnmw.z
 |-  .0. = ( 0. ` K )
4 ltrnmw.a
 |-  A = ( Atoms ` K )
5 ltrnmw.h
 |-  H = ( LHyp ` K )
6 ltrnmw.t
 |-  T = ( ( LTrn ` K ) ` W )
7 simp1
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( K e. HL /\ W e. H ) )
8 1 4 5 6 ltrnel
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) )
9 1 2 3 4 5 lhpmat
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) -> ( ( F ` P ) ./\ W ) = .0. )
10 7 8 9 syl2anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) ./\ W ) = .0. )