| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrneq.b |
|- B = ( Base ` K ) |
| 2 |
|
ltrneq.l |
|- .<_ = ( le ` K ) |
| 3 |
|
ltrneq.a |
|- A = ( Atoms ` K ) |
| 4 |
|
ltrneq.h |
|- H = ( LHyp ` K ) |
| 5 |
|
ltrneq.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 6 |
|
ralinexa |
|- ( A. p e. A ( -. p .<_ W -> -. ( F ` p ) =/= p ) <-> -. E. p e. A ( -. p .<_ W /\ ( F ` p ) =/= p ) ) |
| 7 |
|
nne |
|- ( -. ( F ` p ) =/= p <-> ( F ` p ) = p ) |
| 8 |
7
|
biimpi |
|- ( -. ( F ` p ) =/= p -> ( F ` p ) = p ) |
| 9 |
8
|
imim2i |
|- ( ( -. p .<_ W -> -. ( F ` p ) =/= p ) -> ( -. p .<_ W -> ( F ` p ) = p ) ) |
| 10 |
9
|
ralimi |
|- ( A. p e. A ( -. p .<_ W -> -. ( F ` p ) =/= p ) -> A. p e. A ( -. p .<_ W -> ( F ` p ) = p ) ) |
| 11 |
6 10
|
sylbir |
|- ( -. E. p e. A ( -. p .<_ W /\ ( F ` p ) =/= p ) -> A. p e. A ( -. p .<_ W -> ( F ` p ) = p ) ) |
| 12 |
1 2 3 4 5
|
ltrnid |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( A. p e. A ( -. p .<_ W -> ( F ` p ) = p ) <-> F = ( _I |` B ) ) ) |
| 13 |
11 12
|
imbitrid |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( -. E. p e. A ( -. p .<_ W /\ ( F ` p ) =/= p ) -> F = ( _I |` B ) ) ) |
| 14 |
13
|
necon1ad |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( F =/= ( _I |` B ) -> E. p e. A ( -. p .<_ W /\ ( F ` p ) =/= p ) ) ) |
| 15 |
14
|
3impia |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> E. p e. A ( -. p .<_ W /\ ( F ` p ) =/= p ) ) |