| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrnnidn.b |
|- B = ( Base ` K ) |
| 2 |
|
ltrnnidn.l |
|- .<_ = ( le ` K ) |
| 3 |
|
ltrnnidn.a |
|- A = ( Atoms ` K ) |
| 4 |
|
ltrnnidn.h |
|- H = ( LHyp ` K ) |
| 5 |
|
ltrnnidn.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 6 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> K e. HL ) |
| 7 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
| 8 |
6 7
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> K e. AtLat ) |
| 9 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> F e. T ) |
| 11 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> F =/= ( _I |` B ) ) |
| 12 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
| 13 |
1 3 4 5 12
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> ( ( ( trL ` K ) ` W ) ` F ) e. A ) |
| 14 |
9 10 11 13
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( trL ` K ) ` W ) ` F ) e. A ) |
| 15 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 16 |
15 3
|
atn0 |
|- ( ( K e. AtLat /\ ( ( ( trL ` K ) ` W ) ` F ) e. A ) -> ( ( ( trL ` K ) ` W ) ` F ) =/= ( 0. ` K ) ) |
| 17 |
8 14 16
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( trL ` K ) ` W ) ` F ) =/= ( 0. ` K ) ) |
| 18 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F ` P ) = P ) -> ( K e. HL /\ W e. H ) ) |
| 19 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F ` P ) = P ) -> ( P e. A /\ -. P .<_ W ) ) |
| 20 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F ` P ) = P ) -> F e. T ) |
| 21 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F ` P ) = P ) -> ( F ` P ) = P ) |
| 22 |
2 15 3 4 5 12
|
trl0 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( F e. T /\ ( F ` P ) = P ) ) -> ( ( ( trL ` K ) ` W ) ` F ) = ( 0. ` K ) ) |
| 23 |
18 19 20 21 22
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( F ` P ) = P ) -> ( ( ( trL ` K ) ` W ) ` F ) = ( 0. ` K ) ) |
| 24 |
23
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) = P -> ( ( ( trL ` K ) ` W ) ` F ) = ( 0. ` K ) ) ) |
| 25 |
24
|
necon3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( ( trL ` K ) ` W ) ` F ) =/= ( 0. ` K ) -> ( F ` P ) =/= P ) ) |
| 26 |
17 25
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( F ` P ) =/= P ) |