| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrnval1.b |
|- B = ( Base ` K ) |
| 2 |
|
ltrnval1.l |
|- .<_ = ( le ` K ) |
| 3 |
|
ltrnval1.h |
|- H = ( LHyp ` K ) |
| 4 |
|
ltrnval1.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
eqid |
|- ( ( LDil ` K ) ` W ) = ( ( LDil ` K ) ` W ) |
| 6 |
3 5 4
|
ltrnldil |
|- ( ( ( K e. V /\ W e. H ) /\ F e. T ) -> F e. ( ( LDil ` K ) ` W ) ) |
| 7 |
6
|
3adant3 |
|- ( ( ( K e. V /\ W e. H ) /\ F e. T /\ ( X e. B /\ X .<_ W ) ) -> F e. ( ( LDil ` K ) ` W ) ) |
| 8 |
1 2 3 5
|
ldilval |
|- ( ( ( K e. V /\ W e. H ) /\ F e. ( ( LDil ` K ) ` W ) /\ ( X e. B /\ X .<_ W ) ) -> ( F ` X ) = X ) |
| 9 |
7 8
|
syld3an2 |
|- ( ( ( K e. V /\ W e. H ) /\ F e. T /\ ( X e. B /\ X .<_ W ) ) -> ( F ` X ) = X ) |