Metamath Proof Explorer


Theorem ltso

Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997)

Ref Expression
Assertion ltso
|- < Or RR

Proof

Step Hyp Ref Expression
1 axlttri
 |-  ( ( x e. RR /\ y e. RR ) -> ( x < y <-> -. ( x = y \/ y < x ) ) )
2 lttr
 |-  ( ( x e. RR /\ y e. RR /\ z e. RR ) -> ( ( x < y /\ y < z ) -> x < z ) )
3 1 2 isso2i
 |-  < Or RR