Metamath Proof Explorer


Theorem ltsopr

Description: Positive real 'less than' is a strict ordering. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 25-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltsopr
|- 


Proof

Step Hyp Ref Expression
1 pssirr
 |-  -. x C. x
2 ltprord
 |-  ( ( x e. P. /\ x e. P. ) -> ( x 

x C. x ) )

3 1 2 mtbiri
 |-  ( ( x e. P. /\ x e. P. ) -> -. x 

4 3 anidms
 |-  ( x e. P. -> -. x 

5 psstr
 |-  ( ( x C. y /\ y C. z ) -> x C. z )
6 ltprord
 |-  ( ( x e. P. /\ y e. P. ) -> ( x 

x C. y ) )

7 6 3adant3
 |-  ( ( x e. P. /\ y e. P. /\ z e. P. ) -> ( x 

x C. y ) )

8 ltprord
 |-  ( ( y e. P. /\ z e. P. ) -> ( y 

y C. z ) )

9 8 3adant1
 |-  ( ( x e. P. /\ y e. P. /\ z e. P. ) -> ( y 

y C. z ) )

10 7 9 anbi12d
 |-  ( ( x e. P. /\ y e. P. /\ z e. P. ) -> ( ( x 

( x C. y /\ y C. z ) ) )

11 ltprord
 |-  ( ( x e. P. /\ z e. P. ) -> ( x 

x C. z ) )

12 11 3adant2
 |-  ( ( x e. P. /\ y e. P. /\ z e. P. ) -> ( x 

x C. z ) )

13 10 12 imbi12d
 |-  ( ( x e. P. /\ y e. P. /\ z e. P. ) -> ( ( ( x 

x

( ( x C. y /\ y C. z ) -> x C. z ) ) )

14 5 13 mpbiri
 |-  ( ( x e. P. /\ y e. P. /\ z e. P. ) -> ( ( x 

x

15 psslinpr
 |-  ( ( x e. P. /\ y e. P. ) -> ( x C. y \/ x = y \/ y C. x ) )
16 biidd
 |-  ( ( x e. P. /\ y e. P. ) -> ( x = y <-> x = y ) )
17 ltprord
 |-  ( ( y e. P. /\ x e. P. ) -> ( y 

y C. x ) )

18 17 ancoms
 |-  ( ( x e. P. /\ y e. P. ) -> ( y 

y C. x ) )

19 6 16 18 3orbi123d
 |-  ( ( x e. P. /\ y e. P. ) -> ( ( x 

( x C. y \/ x = y \/ y C. x ) ) )

20 15 19 mpbird
 |-  ( ( x e. P. /\ y e. P. ) -> ( x 

21 4 14 20 issoi
 |-