| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nr |
|- R. = ( ( P. X. P. ) /. ~R ) |
| 2 |
|
breq1 |
|- ( [ <. x , y >. ] ~R = f -> ( [ <. x , y >. ] ~R . ] ~R <-> f . ] ~R ) ) |
| 3 |
|
eqeq1 |
|- ( [ <. x , y >. ] ~R = f -> ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R <-> f = [ <. z , w >. ] ~R ) ) |
| 4 |
|
breq2 |
|- ( [ <. x , y >. ] ~R = f -> ( [ <. z , w >. ] ~R . ] ~R <-> [ <. z , w >. ] ~R |
| 5 |
3 4
|
orbi12d |
|- ( [ <. x , y >. ] ~R = f -> ( ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) <-> ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R |
| 6 |
5
|
notbid |
|- ( [ <. x , y >. ] ~R = f -> ( -. ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) <-> -. ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R |
| 7 |
2 6
|
bibi12d |
|- ( [ <. x , y >. ] ~R = f -> ( ( [ <. x , y >. ] ~R . ] ~R <-> -. ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) ) <-> ( f . ] ~R <-> -. ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R |
| 8 |
|
breq2 |
|- ( [ <. z , w >. ] ~R = g -> ( f . ] ~R <-> f |
| 9 |
|
eqeq2 |
|- ( [ <. z , w >. ] ~R = g -> ( f = [ <. z , w >. ] ~R <-> f = g ) ) |
| 10 |
|
breq1 |
|- ( [ <. z , w >. ] ~R = g -> ( [ <. z , w >. ] ~R g |
| 11 |
9 10
|
orbi12d |
|- ( [ <. z , w >. ] ~R = g -> ( ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R ( f = g \/ g |
| 12 |
11
|
notbid |
|- ( [ <. z , w >. ] ~R = g -> ( -. ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R -. ( f = g \/ g |
| 13 |
8 12
|
bibi12d |
|- ( [ <. z , w >. ] ~R = g -> ( ( f . ] ~R <-> -. ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R ( f -. ( f = g \/ g |
| 14 |
|
ltsrpr |
|- ( [ <. x , y >. ] ~R . ] ~R <-> ( x +P. w ) |
| 15 |
|
addclpr |
|- ( ( x e. P. /\ w e. P. ) -> ( x +P. w ) e. P. ) |
| 16 |
|
addclpr |
|- ( ( y e. P. /\ z e. P. ) -> ( y +P. z ) e. P. ) |
| 17 |
|
ltsopr |
|- |
| 18 |
|
sotric |
|- ( ( ( ( x +P. w ) -. ( ( x +P. w ) = ( y +P. z ) \/ ( y +P. z ) |
| 19 |
17 18
|
mpan |
|- ( ( ( x +P. w ) e. P. /\ ( y +P. z ) e. P. ) -> ( ( x +P. w ) -. ( ( x +P. w ) = ( y +P. z ) \/ ( y +P. z ) |
| 20 |
15 16 19
|
syl2an |
|- ( ( ( x e. P. /\ w e. P. ) /\ ( y e. P. /\ z e. P. ) ) -> ( ( x +P. w ) -. ( ( x +P. w ) = ( y +P. z ) \/ ( y +P. z ) |
| 21 |
20
|
an42s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x +P. w ) -. ( ( x +P. w ) = ( y +P. z ) \/ ( y +P. z ) |
| 22 |
|
enreceq |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R <-> ( x +P. w ) = ( y +P. z ) ) ) |
| 23 |
|
ltsrpr |
|- ( [ <. z , w >. ] ~R . ] ~R <-> ( z +P. y ) |
| 24 |
|
addcompr |
|- ( z +P. y ) = ( y +P. z ) |
| 25 |
|
addcompr |
|- ( w +P. x ) = ( x +P. w ) |
| 26 |
24 25
|
breq12i |
|- ( ( z +P. y ) ( y +P. z ) |
| 27 |
23 26
|
bitri |
|- ( [ <. z , w >. ] ~R . ] ~R <-> ( y +P. z ) |
| 28 |
27
|
a1i |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. z , w >. ] ~R . ] ~R <-> ( y +P. z ) |
| 29 |
22 28
|
orbi12d |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) <-> ( ( x +P. w ) = ( y +P. z ) \/ ( y +P. z ) |
| 30 |
29
|
notbid |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( -. ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) <-> -. ( ( x +P. w ) = ( y +P. z ) \/ ( y +P. z ) |
| 31 |
21 30
|
bitr4d |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x +P. w ) -. ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) ) ) |
| 32 |
14 31
|
bitrid |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R . ] ~R <-> -. ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) ) ) |
| 33 |
1 7 13 32
|
2ecoptocl |
|- ( ( f e. R. /\ g e. R. ) -> ( f -. ( f = g \/ g |
| 34 |
2
|
anbi1d |
|- ( [ <. x , y >. ] ~R = f -> ( ( [ <. x , y >. ] ~R . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) <-> ( f . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) ) ) |
| 35 |
|
breq1 |
|- ( [ <. x , y >. ] ~R = f -> ( [ <. x , y >. ] ~R . ] ~R <-> f . ] ~R ) ) |
| 36 |
34 35
|
imbi12d |
|- ( [ <. x , y >. ] ~R = f -> ( ( ( [ <. x , y >. ] ~R . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) -> [ <. x , y >. ] ~R . ] ~R ) <-> ( ( f . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) -> f . ] ~R ) ) ) |
| 37 |
|
breq1 |
|- ( [ <. z , w >. ] ~R = g -> ( [ <. z , w >. ] ~R . ] ~R <-> g . ] ~R ) ) |
| 38 |
8 37
|
anbi12d |
|- ( [ <. z , w >. ] ~R = g -> ( ( f . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) <-> ( f . ] ~R ) ) ) |
| 39 |
38
|
imbi1d |
|- ( [ <. z , w >. ] ~R = g -> ( ( ( f . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) -> f . ] ~R ) <-> ( ( f . ] ~R ) -> f . ] ~R ) ) ) |
| 40 |
|
breq2 |
|- ( [ <. v , u >. ] ~R = h -> ( g . ] ~R <-> g |
| 41 |
40
|
anbi2d |
|- ( [ <. v , u >. ] ~R = h -> ( ( f . ] ~R ) <-> ( f |
| 42 |
|
breq2 |
|- ( [ <. v , u >. ] ~R = h -> ( f . ] ~R <-> f |
| 43 |
41 42
|
imbi12d |
|- ( [ <. v , u >. ] ~R = h -> ( ( ( f . ] ~R ) -> f . ] ~R ) <-> ( ( f f |
| 44 |
|
ovex |
|- ( x +P. w ) e. _V |
| 45 |
|
ovex |
|- ( y +P. z ) e. _V |
| 46 |
|
ltapr |
|- ( h e. P. -> ( f ( h +P. f ) |
| 47 |
|
vex |
|- u e. _V |
| 48 |
|
addcompr |
|- ( f +P. g ) = ( g +P. f ) |
| 49 |
44 45 46 47 48
|
caovord2 |
|- ( u e. P. -> ( ( x +P. w ) ( ( x +P. w ) +P. u ) |
| 50 |
|
addasspr |
|- ( ( x +P. w ) +P. u ) = ( x +P. ( w +P. u ) ) |
| 51 |
|
addasspr |
|- ( ( y +P. z ) +P. u ) = ( y +P. ( z +P. u ) ) |
| 52 |
50 51
|
breq12i |
|- ( ( ( x +P. w ) +P. u ) ( x +P. ( w +P. u ) ) |
| 53 |
49 52
|
bitrdi |
|- ( u e. P. -> ( ( x +P. w ) ( x +P. ( w +P. u ) ) |
| 54 |
14 53
|
bitrid |
|- ( u e. P. -> ( [ <. x , y >. ] ~R . ] ~R <-> ( x +P. ( w +P. u ) ) |
| 55 |
|
ltsrpr |
|- ( [ <. z , w >. ] ~R . ] ~R <-> ( z +P. u ) |
| 56 |
|
ltapr |
|- ( y e. P. -> ( ( z +P. u ) ( y +P. ( z +P. u ) ) |
| 57 |
55 56
|
bitrid |
|- ( y e. P. -> ( [ <. z , w >. ] ~R . ] ~R <-> ( y +P. ( z +P. u ) ) |
| 58 |
54 57
|
bi2anan9r |
|- ( ( y e. P. /\ u e. P. ) -> ( ( [ <. x , y >. ] ~R . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) <-> ( ( x +P. ( w +P. u ) ) |
| 59 |
|
ltrelpr |
|- |
| 60 |
17 59
|
sotri |
|- ( ( ( x +P. ( w +P. u ) ) ( x +P. ( w +P. u ) ) |
| 61 |
|
dmplp |
|- dom +P. = ( P. X. P. ) |
| 62 |
|
0npr |
|- -. (/) e. P. |
| 63 |
|
ltapr |
|- ( w e. P. -> ( ( x +P. u ) ( w +P. ( x +P. u ) ) |
| 64 |
61 59 62 63
|
ndmovordi |
|- ( ( w +P. ( x +P. u ) ) ( x +P. u ) |
| 65 |
|
vex |
|- x e. _V |
| 66 |
|
vex |
|- w e. _V |
| 67 |
|
addasspr |
|- ( ( f +P. g ) +P. h ) = ( f +P. ( g +P. h ) ) |
| 68 |
65 66 47 48 67
|
caov12 |
|- ( x +P. ( w +P. u ) ) = ( w +P. ( x +P. u ) ) |
| 69 |
|
vex |
|- y e. _V |
| 70 |
|
vex |
|- v e. _V |
| 71 |
69 66 70 48 67
|
caov12 |
|- ( y +P. ( w +P. v ) ) = ( w +P. ( y +P. v ) ) |
| 72 |
68 71
|
breq12i |
|- ( ( x +P. ( w +P. u ) ) ( w +P. ( x +P. u ) ) |
| 73 |
|
ltsrpr |
|- ( [ <. x , y >. ] ~R . ] ~R <-> ( x +P. u ) |
| 74 |
64 72 73
|
3imtr4i |
|- ( ( x +P. ( w +P. u ) ) [ <. x , y >. ] ~R . ] ~R ) |
| 75 |
60 74
|
syl |
|- ( ( ( x +P. ( w +P. u ) ) [ <. x , y >. ] ~R . ] ~R ) |
| 76 |
58 75
|
biimtrdi |
|- ( ( y e. P. /\ u e. P. ) -> ( ( [ <. x , y >. ] ~R . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) -> [ <. x , y >. ] ~R . ] ~R ) ) |
| 77 |
76
|
ad2ant2l |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( [ <. x , y >. ] ~R . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) -> [ <. x , y >. ] ~R . ] ~R ) ) |
| 78 |
77
|
3adant2 |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( [ <. x , y >. ] ~R . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) -> [ <. x , y >. ] ~R . ] ~R ) ) |
| 79 |
1 36 39 43 78
|
3ecoptocl |
|- ( ( f e. R. /\ g e. R. /\ h e. R. ) -> ( ( f f |
| 80 |
33 79
|
isso2i |
|- |