Metamath Proof Explorer


Theorem ltsosr

Description: Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltsosr
|- 

Proof

Step Hyp Ref Expression
1 df-nr
 |-  R. = ( ( P. X. P. ) /. ~R )
2 breq1
 |-  ( [ <. x , y >. ] ~R = f -> ( [ <. x , y >. ] ~R . ] ~R <-> f . ] ~R ) )
3 eqeq1
 |-  ( [ <. x , y >. ] ~R = f -> ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R <-> f = [ <. z , w >. ] ~R ) )
4 breq2
 |-  ( [ <. x , y >. ] ~R = f -> ( [ <. z , w >. ] ~R . ] ~R <-> [ <. z , w >. ] ~R 
5 3 4 orbi12d
 |-  ( [ <. x , y >. ] ~R = f -> ( ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) <-> ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R 
6 5 notbid
 |-  ( [ <. x , y >. ] ~R = f -> ( -. ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) <-> -. ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R 
7 2 6 bibi12d
 |-  ( [ <. x , y >. ] ~R = f -> ( ( [ <. x , y >. ] ~R . ] ~R <-> -. ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) ) <-> ( f . ] ~R <-> -. ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R 
8 breq2
 |-  ( [ <. z , w >. ] ~R = g -> ( f . ] ~R <-> f 
9 eqeq2
 |-  ( [ <. z , w >. ] ~R = g -> ( f = [ <. z , w >. ] ~R <-> f = g ) )
10 breq1
 |-  ( [ <. z , w >. ] ~R = g -> ( [ <. z , w >. ] ~R  g 
11 9 10 orbi12d
 |-  ( [ <. z , w >. ] ~R = g -> ( ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R  ( f = g \/ g 
12 11 notbid
 |-  ( [ <. z , w >. ] ~R = g -> ( -. ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R  -. ( f = g \/ g 
13 8 12 bibi12d
 |-  ( [ <. z , w >. ] ~R = g -> ( ( f . ] ~R <-> -. ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R  ( f  -. ( f = g \/ g 
14 ltsrpr
 |-  ( [ <. x , y >. ] ~R . ] ~R <-> ( x +P. w ) 

15 addclpr
 |-  ( ( x e. P. /\ w e. P. ) -> ( x +P. w ) e. P. )
16 addclpr
 |-  ( ( y e. P. /\ z e. P. ) -> ( y +P. z ) e. P. )
17 ltsopr
 |-  

18 sotric
 |-  ( ( 

( ( x +P. w )

-. ( ( x +P. w ) = ( y +P. z ) \/ ( y +P. z )

19 17 18 mpan
 |-  ( ( ( x +P. w ) e. P. /\ ( y +P. z ) e. P. ) -> ( ( x +P. w ) 

-. ( ( x +P. w ) = ( y +P. z ) \/ ( y +P. z )

20 15 16 19 syl2an
 |-  ( ( ( x e. P. /\ w e. P. ) /\ ( y e. P. /\ z e. P. ) ) -> ( ( x +P. w ) 

-. ( ( x +P. w ) = ( y +P. z ) \/ ( y +P. z )

21 20 an42s
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x +P. w ) 

-. ( ( x +P. w ) = ( y +P. z ) \/ ( y +P. z )

22 enreceq
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R <-> ( x +P. w ) = ( y +P. z ) ) )
23 ltsrpr
 |-  ( [ <. z , w >. ] ~R . ] ~R <-> ( z +P. y ) 

24 addcompr
 |-  ( z +P. y ) = ( y +P. z )
25 addcompr
 |-  ( w +P. x ) = ( x +P. w )
26 24 25 breq12i
 |-  ( ( z +P. y ) 

( y +P. z )

27 23 26 bitri
 |-  ( [ <. z , w >. ] ~R . ] ~R <-> ( y +P. z ) 

28 27 a1i
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. z , w >. ] ~R . ] ~R <-> ( y +P. z ) 

29 22 28 orbi12d
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) <-> ( ( x +P. w ) = ( y +P. z ) \/ ( y +P. z ) 

30 29 notbid
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( -. ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) <-> -. ( ( x +P. w ) = ( y +P. z ) \/ ( y +P. z ) 

31 21 30 bitr4d
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x +P. w ) 

-. ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) ) )

32 14 31 syl5bb
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R . ] ~R <-> -. ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R . ] ~R ) ) )
33 1 7 13 32 2ecoptocl
 |-  ( ( f e. R. /\ g e. R. ) -> ( f  -. ( f = g \/ g 
34 2 anbi1d
 |-  ( [ <. x , y >. ] ~R = f -> ( ( [ <. x , y >. ] ~R . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) <-> ( f . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) ) )
35 breq1
 |-  ( [ <. x , y >. ] ~R = f -> ( [ <. x , y >. ] ~R . ] ~R <-> f . ] ~R ) )
36 34 35 imbi12d
 |-  ( [ <. x , y >. ] ~R = f -> ( ( ( [ <. x , y >. ] ~R . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) -> [ <. x , y >. ] ~R . ] ~R ) <-> ( ( f . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) -> f . ] ~R ) ) )
37 breq1
 |-  ( [ <. z , w >. ] ~R = g -> ( [ <. z , w >. ] ~R . ] ~R <-> g . ] ~R ) )
38 8 37 anbi12d
 |-  ( [ <. z , w >. ] ~R = g -> ( ( f . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) <-> ( f . ] ~R ) ) )
39 38 imbi1d
 |-  ( [ <. z , w >. ] ~R = g -> ( ( ( f . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) -> f . ] ~R ) <-> ( ( f . ] ~R ) -> f . ] ~R ) ) )
40 breq2
 |-  ( [ <. v , u >. ] ~R = h -> ( g . ] ~R <-> g 
41 40 anbi2d
 |-  ( [ <. v , u >. ] ~R = h -> ( ( f . ] ~R ) <-> ( f 
42 breq2
 |-  ( [ <. v , u >. ] ~R = h -> ( f . ] ~R <-> f 
43 41 42 imbi12d
 |-  ( [ <. v , u >. ] ~R = h -> ( ( ( f . ] ~R ) -> f . ] ~R ) <-> ( ( f  f 
44 ovex
 |-  ( x +P. w ) e. _V
45 ovex
 |-  ( y +P. z ) e. _V
46 ltapr
 |-  ( h e. P. -> ( f 

( h +P. f )

47 vex
 |-  u e. _V
48 addcompr
 |-  ( f +P. g ) = ( g +P. f )
49 44 45 46 47 48 caovord2
 |-  ( u e. P. -> ( ( x +P. w ) 

( ( x +P. w ) +P. u )

50 addasspr
 |-  ( ( x +P. w ) +P. u ) = ( x +P. ( w +P. u ) )
51 addasspr
 |-  ( ( y +P. z ) +P. u ) = ( y +P. ( z +P. u ) )
52 50 51 breq12i
 |-  ( ( ( x +P. w ) +P. u ) 

( x +P. ( w +P. u ) )

53 49 52 bitrdi
 |-  ( u e. P. -> ( ( x +P. w ) 

( x +P. ( w +P. u ) )

54 14 53 syl5bb
 |-  ( u e. P. -> ( [ <. x , y >. ] ~R . ] ~R <-> ( x +P. ( w +P. u ) ) 

55 ltsrpr
 |-  ( [ <. z , w >. ] ~R . ] ~R <-> ( z +P. u ) 

56 ltapr
 |-  ( y e. P. -> ( ( z +P. u ) 

( y +P. ( z +P. u ) )

57 55 56 syl5bb
 |-  ( y e. P. -> ( [ <. z , w >. ] ~R . ] ~R <-> ( y +P. ( z +P. u ) ) 

58 54 57 bi2anan9r
 |-  ( ( y e. P. /\ u e. P. ) -> ( ( [ <. x , y >. ] ~R . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) <-> ( ( x +P. ( w +P. u ) ) 

59 ltrelpr
 |-  

60 17 59 sotri
 |-  ( ( ( x +P. ( w +P. u ) ) 

( x +P. ( w +P. u ) )

61 dmplp
 |-  dom +P. = ( P. X. P. )
62 0npr
 |-  -. (/) e. P.
63 ltapr
 |-  ( w e. P. -> ( ( x +P. u ) 

( w +P. ( x +P. u ) )

64 61 59 62 63 ndmovordi
 |-  ( ( w +P. ( x +P. u ) ) 

( x +P. u )

65 vex
 |-  x e. _V
66 vex
 |-  w e. _V
67 addasspr
 |-  ( ( f +P. g ) +P. h ) = ( f +P. ( g +P. h ) )
68 65 66 47 48 67 caov12
 |-  ( x +P. ( w +P. u ) ) = ( w +P. ( x +P. u ) )
69 vex
 |-  y e. _V
70 vex
 |-  v e. _V
71 69 66 70 48 67 caov12
 |-  ( y +P. ( w +P. v ) ) = ( w +P. ( y +P. v ) )
72 68 71 breq12i
 |-  ( ( x +P. ( w +P. u ) ) 

( w +P. ( x +P. u ) )

73 ltsrpr
 |-  ( [ <. x , y >. ] ~R . ] ~R <-> ( x +P. u ) 

74 64 72 73 3imtr4i
 |-  ( ( x +P. ( w +P. u ) ) 

[ <. x , y >. ] ~R . ] ~R )

75 60 74 syl
 |-  ( ( ( x +P. ( w +P. u ) ) 

[ <. x , y >. ] ~R . ] ~R )

76 58 75 syl6bi
 |-  ( ( y e. P. /\ u e. P. ) -> ( ( [ <. x , y >. ] ~R . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) -> [ <. x , y >. ] ~R . ] ~R ) )
77 76 ad2ant2l
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( [ <. x , y >. ] ~R . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) -> [ <. x , y >. ] ~R . ] ~R ) )
78 77 3adant2
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( [ <. x , y >. ] ~R . ] ~R /\ [ <. z , w >. ] ~R . ] ~R ) -> [ <. x , y >. ] ~R . ] ~R ) )
79 1 36 39 43 78 3ecoptocl
 |-  ( ( f e. R. /\ g e. R. /\ h e. R. ) -> ( ( f  f 
80 33 79 isso2i
 |-