Description: 'Less than' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltsub13 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < ( B - C ) <-> C < ( B - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltaddsub | |- ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( ( A + C ) < B <-> A < ( B - C ) ) ) |
|
| 2 | ltaddsub2 | |- ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( ( A + C ) < B <-> C < ( B - A ) ) ) |
|
| 3 | 1 2 | bitr3d | |- ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( A < ( B - C ) <-> C < ( B - A ) ) ) |
| 4 | 3 | 3com23 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < ( B - C ) <-> C < ( B - A ) ) ) |