Step |
Hyp |
Ref |
Expression |
1 |
|
lesub2 |
|- ( ( B e. RR /\ A e. RR /\ C e. RR ) -> ( B <_ A <-> ( C - A ) <_ ( C - B ) ) ) |
2 |
1
|
3com12 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B <_ A <-> ( C - A ) <_ ( C - B ) ) ) |
3 |
2
|
notbid |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. B <_ A <-> -. ( C - A ) <_ ( C - B ) ) ) |
4 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
5 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
6 |
4 5
|
ltnled |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> -. B <_ A ) ) |
7 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
8 |
7 5
|
resubcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C - B ) e. RR ) |
9 |
7 4
|
resubcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C - A ) e. RR ) |
10 |
8 9
|
ltnled |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C - B ) < ( C - A ) <-> -. ( C - A ) <_ ( C - B ) ) ) |
11 |
3 6 10
|
3bitr4d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( C - B ) < ( C - A ) ) ) |