Description: 'Less than' relationship between subtraction and addition. (Contributed by NM, 4-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | ltsub23 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) < C <-> ( A - C ) < B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsubadd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) < C <-> A < ( C + B ) ) ) |
|
2 | ltsubadd2 | |- ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( ( A - C ) < B <-> A < ( C + B ) ) ) |
|
3 | 2 | 3com23 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - C ) < B <-> A < ( C + B ) ) ) |
4 | 1 3 | bitr4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) < C <-> ( A - C ) < B ) ) |