Metamath Proof Explorer


Theorem ltsub23

Description: 'Less than' relationship between subtraction and addition. (Contributed by NM, 4-Oct-1999)

Ref Expression
Assertion ltsub23
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) < C <-> ( A - C ) < B ) )

Proof

Step Hyp Ref Expression
1 ltsubadd
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) < C <-> A < ( C + B ) ) )
2 ltsubadd2
 |-  ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( ( A - C ) < B <-> A < ( C + B ) ) )
3 2 3com23
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - C ) < B <-> A < ( C + B ) ) )
4 1 3 bitr4d
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) < C <-> ( A - C ) < B ) )