Step |
Hyp |
Ref |
Expression |
1 |
|
ltsubadd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) < C <-> A < ( C + B ) ) ) |
2 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
3 |
2
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
4 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
5 |
4
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
6 |
3 5
|
addcomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B + C ) = ( C + B ) ) |
7 |
6
|
breq2d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < ( B + C ) <-> A < ( C + B ) ) ) |
8 |
1 7
|
bitr4d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) < C <-> A < ( B + C ) ) ) |