Description: 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | |- ( ph -> A e. RR ) |
|
| ltnegd.2 | |- ( ph -> B e. RR ) |
||
| ltadd1d.3 | |- ( ph -> C e. RR ) |
||
| Assertion | ltsubaddd | |- ( ph -> ( ( A - B ) < C <-> A < ( C + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | |- ( ph -> A e. RR ) |
|
| 2 | ltnegd.2 | |- ( ph -> B e. RR ) |
|
| 3 | ltadd1d.3 | |- ( ph -> C e. RR ) |
|
| 4 | ltsubadd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) < C <-> A < ( C + B ) ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( A - B ) < C <-> A < ( C + B ) ) ) |