Metamath Proof Explorer


Theorem ltsubnn0

Description: Subtracting a nonnegative integer from a nonnegative integer which is greater than the first one results in a nonnegative integer. (Contributed by Alexander van der Vekens, 6-Apr-2018)

Ref Expression
Assertion ltsubnn0
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( B < A -> ( A - B ) e. NN0 ) )

Proof

Step Hyp Ref Expression
1 nn0re
 |-  ( B e. NN0 -> B e. RR )
2 nn0re
 |-  ( A e. NN0 -> A e. RR )
3 ltle
 |-  ( ( B e. RR /\ A e. RR ) -> ( B < A -> B <_ A ) )
4 1 2 3 syl2anr
 |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( B < A -> B <_ A ) )
5 nn0sub
 |-  ( ( B e. NN0 /\ A e. NN0 ) -> ( B <_ A <-> ( A - B ) e. NN0 ) )
6 5 ancoms
 |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( B <_ A <-> ( A - B ) e. NN0 ) )
7 4 6 sylibd
 |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( B < A -> ( A - B ) e. NN0 ) )