Metamath Proof Explorer


Theorem ltsubpos

Description: Subtracting a positive number from another number decreases it. (Contributed by NM, 17-Nov-2004) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion ltsubpos
|- ( ( A e. RR /\ B e. RR ) -> ( 0 < A <-> ( B - A ) < B ) )

Proof

Step Hyp Ref Expression
1 ltaddpos
 |-  ( ( A e. RR /\ B e. RR ) -> ( 0 < A <-> B < ( B + A ) ) )
2 ltsubadd
 |-  ( ( B e. RR /\ A e. RR /\ B e. RR ) -> ( ( B - A ) < B <-> B < ( B + A ) ) )
3 2 3anidm13
 |-  ( ( B e. RR /\ A e. RR ) -> ( ( B - A ) < B <-> B < ( B + A ) ) )
4 3 ancoms
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( B - A ) < B <-> B < ( B + A ) ) )
5 1 4 bitr4d
 |-  ( ( A e. RR /\ B e. RR ) -> ( 0 < A <-> ( B - A ) < B ) )