Metamath Proof Explorer


Theorem lttri2i

Description: Consequence of trichotomy. (Contributed by NM, 19-Jan-1997)

Ref Expression
Hypotheses lt.1
|- A e. RR
lt.2
|- B e. RR
Assertion lttri2i
|- ( A =/= B <-> ( A < B \/ B < A ) )

Proof

Step Hyp Ref Expression
1 lt.1
 |-  A e. RR
2 lt.2
 |-  B e. RR
3 lttri2
 |-  ( ( A e. RR /\ B e. RR ) -> ( A =/= B <-> ( A < B \/ B < A ) ) )
4 1 2 3 mp2an
 |-  ( A =/= B <-> ( A < B \/ B < A ) )