Metamath Proof Explorer


Theorem lttri4d

Description: Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Hypotheses ltd.1
|- ( ph -> A e. RR )
ltd.2
|- ( ph -> B e. RR )
Assertion lttri4d
|- ( ph -> ( A < B \/ A = B \/ B < A ) )

Proof

Step Hyp Ref Expression
1 ltd.1
 |-  ( ph -> A e. RR )
2 ltd.2
 |-  ( ph -> B e. RR )
3 lttri4
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B \/ A = B \/ B < A ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A < B \/ A = B \/ B < A ) )