Metamath Proof Explorer
Description: Not equal and not larger implies smaller. (Contributed by Glauco
Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
lttri5d.a |
|- ( ph -> A e. RR ) |
|
|
lttri5d.b |
|- ( ph -> B e. RR ) |
|
|
lttri5d.aneb |
|- ( ph -> A =/= B ) |
|
|
lttri5d.nlt |
|- ( ph -> -. B < A ) |
|
Assertion |
lttri5d |
|- ( ph -> A < B ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lttri5d.a |
|- ( ph -> A e. RR ) |
2 |
|
lttri5d.b |
|- ( ph -> B e. RR ) |
3 |
|
lttri5d.aneb |
|- ( ph -> A =/= B ) |
4 |
|
lttri5d.nlt |
|- ( ph -> -. B < A ) |
5 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
6 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
7 |
5 6 3 4
|
xrlttri5d |
|- ( ph -> A < B ) |