Metamath Proof Explorer
		
		
		
		Description:  Not equal and not larger implies smaller.  (Contributed by Glauco
       Siliprandi, 11-Dec-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lttri5d.a | |- ( ph -> A e. RR ) | 
					
						|  |  | lttri5d.b | |- ( ph -> B e. RR ) | 
					
						|  |  | lttri5d.aneb | |- ( ph -> A =/= B ) | 
					
						|  |  | lttri5d.nlt | |- ( ph -> -. B < A ) | 
				
					|  | Assertion | lttri5d | |- ( ph -> A < B ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lttri5d.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | lttri5d.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | lttri5d.aneb |  |-  ( ph -> A =/= B ) | 
						
							| 4 |  | lttri5d.nlt |  |-  ( ph -> -. B < A ) | 
						
							| 5 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 6 | 2 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 7 | 5 6 3 4 | xrlttri5d |  |-  ( ph -> A < B ) |