Step |
Hyp |
Ref |
Expression |
1 |
|
ordom |
|- Ord _om |
2 |
|
ordwe |
|- ( Ord _om -> _E We _om ) |
3 |
1 2
|
ax-mp |
|- _E We _om |
4 |
|
rdgeq2 |
|- ( A = if ( A e. ZZ , A , 0 ) -> rec ( ( x e. _V |-> ( x + 1 ) ) , A ) = rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) ) |
5 |
4
|
reseq1d |
|- ( A = if ( A e. ZZ , A , 0 ) -> ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) ) |
6 |
|
isoeq1 |
|- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) <-> ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) ) ) |
7 |
5 6
|
syl |
|- ( A = if ( A e. ZZ , A , 0 ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) <-> ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) ) ) |
8 |
|
fveq2 |
|- ( A = if ( A e. ZZ , A , 0 ) -> ( ZZ>= ` A ) = ( ZZ>= ` if ( A e. ZZ , A , 0 ) ) ) |
9 |
|
isoeq5 |
|- ( ( ZZ>= ` A ) = ( ZZ>= ` if ( A e. ZZ , A , 0 ) ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) <-> ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` if ( A e. ZZ , A , 0 ) ) ) ) ) |
10 |
8 9
|
syl |
|- ( A = if ( A e. ZZ , A , 0 ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) <-> ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` if ( A e. ZZ , A , 0 ) ) ) ) ) |
11 |
|
0z |
|- 0 e. ZZ |
12 |
11
|
elimel |
|- if ( A e. ZZ , A , 0 ) e. ZZ |
13 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) |
14 |
12 13
|
om2uzisoi |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( A e. ZZ , A , 0 ) ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` if ( A e. ZZ , A , 0 ) ) ) |
15 |
7 10 14
|
dedth2v |
|- ( A e. ZZ -> ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) ) |
16 |
|
isocnv |
|- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom _E , < ( _om , ( ZZ>= ` A ) ) -> `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom < , _E ( ( ZZ>= ` A ) , _om ) ) |
17 |
15 16
|
syl |
|- ( A e. ZZ -> `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom < , _E ( ( ZZ>= ` A ) , _om ) ) |
18 |
|
dmres |
|- dom ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) = ( _om i^i dom rec ( ( x e. _V |-> ( x + 1 ) ) , A ) ) |
19 |
|
omex |
|- _om e. _V |
20 |
19
|
inex1 |
|- ( _om i^i dom rec ( ( x e. _V |-> ( x + 1 ) ) , A ) ) e. _V |
21 |
18 20
|
eqeltri |
|- dom ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) e. _V |
22 |
|
cnvimass |
|- ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) " y ) C_ dom ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) |
23 |
21 22
|
ssexi |
|- ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) " y ) e. _V |
24 |
23
|
ax-gen |
|- A. y ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) " y ) e. _V |
25 |
|
isowe2 |
|- ( ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) Isom < , _E ( ( ZZ>= ` A ) , _om ) /\ A. y ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) " y ) e. _V ) -> ( _E We _om -> < We ( ZZ>= ` A ) ) ) |
26 |
17 24 25
|
sylancl |
|- ( A e. ZZ -> ( _E We _om -> < We ( ZZ>= ` A ) ) ) |
27 |
3 26
|
mpi |
|- ( A e. ZZ -> < We ( ZZ>= ` A ) ) |
28 |
|
uzf |
|- ZZ>= : ZZ --> ~P ZZ |
29 |
28
|
fdmi |
|- dom ZZ>= = ZZ |
30 |
27 29
|
eleq2s |
|- ( A e. dom ZZ>= -> < We ( ZZ>= ` A ) ) |
31 |
|
we0 |
|- < We (/) |
32 |
|
ndmfv |
|- ( -. A e. dom ZZ>= -> ( ZZ>= ` A ) = (/) ) |
33 |
|
weeq2 |
|- ( ( ZZ>= ` A ) = (/) -> ( < We ( ZZ>= ` A ) <-> < We (/) ) ) |
34 |
32 33
|
syl |
|- ( -. A e. dom ZZ>= -> ( < We ( ZZ>= ` A ) <-> < We (/) ) ) |
35 |
31 34
|
mpbiri |
|- ( -. A e. dom ZZ>= -> < We ( ZZ>= ` A ) ) |
36 |
30 35
|
pm2.61i |
|- < We ( ZZ>= ` A ) |