Step |
Hyp |
Ref |
Expression |
1 |
|
breq12 |
|- ( ( x = A /\ y = B ) -> ( x A |
2 |
|
df-3an |
|- ( ( x e. RR /\ y e. RR /\ x ( ( x e. RR /\ y e. RR ) /\ x |
3 |
2
|
opabbii |
|- { <. x , y >. | ( x e. RR /\ y e. RR /\ x . | ( ( x e. RR /\ y e. RR ) /\ x |
4 |
1 3
|
brab2a |
|- ( A { <. x , y >. | ( x e. RR /\ y e. RR /\ x ( ( A e. RR /\ B e. RR ) /\ A |
5 |
4
|
a1i |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A { <. x , y >. | ( x e. RR /\ y e. RR /\ x ( ( A e. RR /\ B e. RR ) /\ A |
6 |
|
brun |
|- ( A ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) B <-> ( A ( ( RR u. { -oo } ) X. { +oo } ) B \/ A ( { -oo } X. RR ) B ) ) |
7 |
|
brxp |
|- ( A ( ( RR u. { -oo } ) X. { +oo } ) B <-> ( A e. ( RR u. { -oo } ) /\ B e. { +oo } ) ) |
8 |
|
elun |
|- ( A e. ( RR u. { -oo } ) <-> ( A e. RR \/ A e. { -oo } ) ) |
9 |
|
orcom |
|- ( ( A e. RR \/ A e. { -oo } ) <-> ( A e. { -oo } \/ A e. RR ) ) |
10 |
8 9
|
bitri |
|- ( A e. ( RR u. { -oo } ) <-> ( A e. { -oo } \/ A e. RR ) ) |
11 |
|
elsng |
|- ( A e. RR* -> ( A e. { -oo } <-> A = -oo ) ) |
12 |
11
|
orbi1d |
|- ( A e. RR* -> ( ( A e. { -oo } \/ A e. RR ) <-> ( A = -oo \/ A e. RR ) ) ) |
13 |
10 12
|
syl5bb |
|- ( A e. RR* -> ( A e. ( RR u. { -oo } ) <-> ( A = -oo \/ A e. RR ) ) ) |
14 |
|
elsng |
|- ( B e. RR* -> ( B e. { +oo } <-> B = +oo ) ) |
15 |
13 14
|
bi2anan9 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A e. ( RR u. { -oo } ) /\ B e. { +oo } ) <-> ( ( A = -oo \/ A e. RR ) /\ B = +oo ) ) ) |
16 |
|
andir |
|- ( ( ( A = -oo \/ A e. RR ) /\ B = +oo ) <-> ( ( A = -oo /\ B = +oo ) \/ ( A e. RR /\ B = +oo ) ) ) |
17 |
15 16
|
bitrdi |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A e. ( RR u. { -oo } ) /\ B e. { +oo } ) <-> ( ( A = -oo /\ B = +oo ) \/ ( A e. RR /\ B = +oo ) ) ) ) |
18 |
7 17
|
syl5bb |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A ( ( RR u. { -oo } ) X. { +oo } ) B <-> ( ( A = -oo /\ B = +oo ) \/ ( A e. RR /\ B = +oo ) ) ) ) |
19 |
|
brxp |
|- ( A ( { -oo } X. RR ) B <-> ( A e. { -oo } /\ B e. RR ) ) |
20 |
11
|
anbi1d |
|- ( A e. RR* -> ( ( A e. { -oo } /\ B e. RR ) <-> ( A = -oo /\ B e. RR ) ) ) |
21 |
20
|
adantr |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A e. { -oo } /\ B e. RR ) <-> ( A = -oo /\ B e. RR ) ) ) |
22 |
19 21
|
syl5bb |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A ( { -oo } X. RR ) B <-> ( A = -oo /\ B e. RR ) ) ) |
23 |
18 22
|
orbi12d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A ( ( RR u. { -oo } ) X. { +oo } ) B \/ A ( { -oo } X. RR ) B ) <-> ( ( ( A = -oo /\ B = +oo ) \/ ( A e. RR /\ B = +oo ) ) \/ ( A = -oo /\ B e. RR ) ) ) ) |
24 |
|
orass |
|- ( ( ( ( A = -oo /\ B = +oo ) \/ ( A e. RR /\ B = +oo ) ) \/ ( A = -oo /\ B e. RR ) ) <-> ( ( A = -oo /\ B = +oo ) \/ ( ( A e. RR /\ B = +oo ) \/ ( A = -oo /\ B e. RR ) ) ) ) |
25 |
23 24
|
bitrdi |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A ( ( RR u. { -oo } ) X. { +oo } ) B \/ A ( { -oo } X. RR ) B ) <-> ( ( A = -oo /\ B = +oo ) \/ ( ( A e. RR /\ B = +oo ) \/ ( A = -oo /\ B e. RR ) ) ) ) ) |
26 |
6 25
|
syl5bb |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) B <-> ( ( A = -oo /\ B = +oo ) \/ ( ( A e. RR /\ B = +oo ) \/ ( A = -oo /\ B e. RR ) ) ) ) ) |
27 |
5 26
|
orbi12d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A { <. x , y >. | ( x e. RR /\ y e. RR /\ x ( ( ( A e. RR /\ B e. RR ) /\ A |
28 |
|
df-ltxr |
|- < = ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
29 |
28
|
breqi |
|- ( A < B <-> A ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
30 |
|
brun |
|- ( A ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x ( A { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
31 |
29 30
|
bitri |
|- ( A < B <-> ( A { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
32 |
|
orass |
|- ( ( ( ( ( A e. RR /\ B e. RR ) /\ A ( ( ( A e. RR /\ B e. RR ) /\ A |
33 |
27 31 32
|
3bitr4g |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> ( ( ( ( A e. RR /\ B e. RR ) /\ A |