| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lublem.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							lublem.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							lublem.u | 
							 |-  U = ( lub ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							clatl | 
							 |-  ( K e. CLat -> K e. Lat )  | 
						
						
							| 5 | 
							
								
							 | 
							ssel | 
							 |-  ( S C_ B -> ( X e. S -> X e. B ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							impcom | 
							 |-  ( ( X e. S /\ S C_ B ) -> X e. B )  | 
						
						
							| 7 | 
							
								1 3
							 | 
							lubsn | 
							 |-  ( ( K e. Lat /\ X e. B ) -> ( U ` { X } ) = X ) | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							syl2an | 
							 |-  ( ( K e. CLat /\ ( X e. S /\ S C_ B ) ) -> ( U ` { X } ) = X ) | 
						
						
							| 9 | 
							
								8
							 | 
							3impb | 
							 |-  ( ( K e. CLat /\ X e. S /\ S C_ B ) -> ( U ` { X } ) = X ) | 
						
						
							| 10 | 
							
								
							 | 
							snssi | 
							 |-  ( X e. S -> { X } C_ S ) | 
						
						
							| 11 | 
							
								1 2 3
							 | 
							lubss | 
							 |-  ( ( K e. CLat /\ S C_ B /\ { X } C_ S ) -> ( U ` { X } ) .<_ ( U ` S ) ) | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl3an3 | 
							 |-  ( ( K e. CLat /\ S C_ B /\ X e. S ) -> ( U ` { X } ) .<_ ( U ` S ) ) | 
						
						
							| 13 | 
							
								12
							 | 
							3com23 | 
							 |-  ( ( K e. CLat /\ X e. S /\ S C_ B ) -> ( U ` { X } ) .<_ ( U ` S ) ) | 
						
						
							| 14 | 
							
								9 13
							 | 
							eqbrtrrd | 
							 |-  ( ( K e. CLat /\ X e. S /\ S C_ B ) -> X .<_ ( U ` S ) )  |