| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lublem.b |
|- B = ( Base ` K ) |
| 2 |
|
lublem.l |
|- .<_ = ( le ` K ) |
| 3 |
|
lublem.u |
|- U = ( lub ` K ) |
| 4 |
|
clatl |
|- ( K e. CLat -> K e. Lat ) |
| 5 |
|
ssel |
|- ( S C_ B -> ( X e. S -> X e. B ) ) |
| 6 |
5
|
impcom |
|- ( ( X e. S /\ S C_ B ) -> X e. B ) |
| 7 |
1 3
|
lubsn |
|- ( ( K e. Lat /\ X e. B ) -> ( U ` { X } ) = X ) |
| 8 |
4 6 7
|
syl2an |
|- ( ( K e. CLat /\ ( X e. S /\ S C_ B ) ) -> ( U ` { X } ) = X ) |
| 9 |
8
|
3impb |
|- ( ( K e. CLat /\ X e. S /\ S C_ B ) -> ( U ` { X } ) = X ) |
| 10 |
|
snssi |
|- ( X e. S -> { X } C_ S ) |
| 11 |
1 2 3
|
lubss |
|- ( ( K e. CLat /\ S C_ B /\ { X } C_ S ) -> ( U ` { X } ) .<_ ( U ` S ) ) |
| 12 |
10 11
|
syl3an3 |
|- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> ( U ` { X } ) .<_ ( U ` S ) ) |
| 13 |
12
|
3com23 |
|- ( ( K e. CLat /\ X e. S /\ S C_ B ) -> ( U ` { X } ) .<_ ( U ` S ) ) |
| 14 |
9 13
|
eqbrtrrd |
|- ( ( K e. CLat /\ X e. S /\ S C_ B ) -> X .<_ ( U ` S ) ) |