Description: A member of the domain of the least upper bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lubs.b | |- B = ( Base ` K ) |
|
lubs.l | |- .<_ = ( le ` K ) |
||
lubs.u | |- U = ( lub ` K ) |
||
lubs.k | |- ( ph -> K e. V ) |
||
lubs.s | |- ( ph -> S e. dom U ) |
||
Assertion | lubelss | |- ( ph -> S C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubs.b | |- B = ( Base ` K ) |
|
2 | lubs.l | |- .<_ = ( le ` K ) |
|
3 | lubs.u | |- U = ( lub ` K ) |
|
4 | lubs.k | |- ( ph -> K e. V ) |
|
5 | lubs.s | |- ( ph -> S e. dom U ) |
|
6 | biid | |- ( ( A. y e. S y .<_ x /\ A. z e. B ( A. y e. S y .<_ z -> x .<_ z ) ) <-> ( A. y e. S y .<_ x /\ A. z e. B ( A. y e. S y .<_ z -> x .<_ z ) ) ) |
|
7 | 1 2 3 6 4 | lubeldm | |- ( ph -> ( S e. dom U <-> ( S C_ B /\ E! x e. B ( A. y e. S y .<_ x /\ A. z e. B ( A. y e. S y .<_ z -> x .<_ z ) ) ) ) ) |
8 | 5 7 | mpbid | |- ( ph -> ( S C_ B /\ E! x e. B ( A. y e. S y .<_ x /\ A. z e. B ( A. y e. S y .<_ z -> x .<_ z ) ) ) ) |
9 | 8 | simpld | |- ( ph -> S C_ B ) |