Metamath Proof Explorer


Theorem lubelss

Description: A member of the domain of the least upper bound function is a subset of the base set. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses lubs.b
|- B = ( Base ` K )
lubs.l
|- .<_ = ( le ` K )
lubs.u
|- U = ( lub ` K )
lubs.k
|- ( ph -> K e. V )
lubs.s
|- ( ph -> S e. dom U )
Assertion lubelss
|- ( ph -> S C_ B )

Proof

Step Hyp Ref Expression
1 lubs.b
 |-  B = ( Base ` K )
2 lubs.l
 |-  .<_ = ( le ` K )
3 lubs.u
 |-  U = ( lub ` K )
4 lubs.k
 |-  ( ph -> K e. V )
5 lubs.s
 |-  ( ph -> S e. dom U )
6 biid
 |-  ( ( A. y e. S y .<_ x /\ A. z e. B ( A. y e. S y .<_ z -> x .<_ z ) ) <-> ( A. y e. S y .<_ x /\ A. z e. B ( A. y e. S y .<_ z -> x .<_ z ) ) )
7 1 2 3 6 4 lubeldm
 |-  ( ph -> ( S e. dom U <-> ( S C_ B /\ E! x e. B ( A. y e. S y .<_ x /\ A. z e. B ( A. y e. S y .<_ z -> x .<_ z ) ) ) ) )
8 5 7 mpbid
 |-  ( ph -> ( S C_ B /\ E! x e. B ( A. y e. S y .<_ x /\ A. z e. B ( A. y e. S y .<_ z -> x .<_ z ) ) ) )
9 8 simpld
 |-  ( ph -> S C_ B )