Description: Unique existence proper of a member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lubval.b | |- B = ( Base ` K ) |
|
lubval.l | |- .<_ = ( le ` K ) |
||
lubval.u | |- U = ( lub ` K ) |
||
lubval.p | |- ( ps <-> ( A. y e. S y .<_ x /\ A. z e. B ( A. y e. S y .<_ z -> x .<_ z ) ) ) |
||
lubval.k | |- ( ph -> K e. V ) |
||
lubeleu.s | |- ( ph -> S e. dom U ) |
||
Assertion | lubeu | |- ( ph -> E! x e. B ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubval.b | |- B = ( Base ` K ) |
|
2 | lubval.l | |- .<_ = ( le ` K ) |
|
3 | lubval.u | |- U = ( lub ` K ) |
|
4 | lubval.p | |- ( ps <-> ( A. y e. S y .<_ x /\ A. z e. B ( A. y e. S y .<_ z -> x .<_ z ) ) ) |
|
5 | lubval.k | |- ( ph -> K e. V ) |
|
6 | lubeleu.s | |- ( ph -> S e. dom U ) |
|
7 | 1 2 3 4 5 | lubeldm | |- ( ph -> ( S e. dom U <-> ( S C_ B /\ E! x e. B ps ) ) ) |
8 | 6 7 | mpbid | |- ( ph -> ( S C_ B /\ E! x e. B ps ) ) |
9 | 8 | simprd | |- ( ph -> E! x e. B ps ) |