Metamath Proof Explorer


Theorem lubeu

Description: Unique existence proper of a member of the domain of the least upper bound function of a poset. (Contributed by NM, 7-Sep-2018)

Ref Expression
Hypotheses lubval.b
|- B = ( Base ` K )
lubval.l
|- .<_ = ( le ` K )
lubval.u
|- U = ( lub ` K )
lubval.p
|- ( ps <-> ( A. y e. S y .<_ x /\ A. z e. B ( A. y e. S y .<_ z -> x .<_ z ) ) )
lubval.k
|- ( ph -> K e. V )
lubeleu.s
|- ( ph -> S e. dom U )
Assertion lubeu
|- ( ph -> E! x e. B ps )

Proof

Step Hyp Ref Expression
1 lubval.b
 |-  B = ( Base ` K )
2 lubval.l
 |-  .<_ = ( le ` K )
3 lubval.u
 |-  U = ( lub ` K )
4 lubval.p
 |-  ( ps <-> ( A. y e. S y .<_ x /\ A. z e. B ( A. y e. S y .<_ z -> x .<_ z ) ) )
5 lubval.k
 |-  ( ph -> K e. V )
6 lubeleu.s
 |-  ( ph -> S e. dom U )
7 1 2 3 4 5 lubeldm
 |-  ( ph -> ( S e. dom U <-> ( S C_ B /\ E! x e. B ps ) ) )
8 6 7 mpbid
 |-  ( ph -> ( S C_ B /\ E! x e. B ps ) )
9 8 simprd
 |-  ( ph -> E! x e. B ps )