Metamath Proof Explorer


Theorem luble

Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)

Ref Expression
Hypotheses lubprop.b
|- B = ( Base ` K )
lubprop.l
|- .<_ = ( le ` K )
lubprop.u
|- U = ( lub ` K )
lubprop.k
|- ( ph -> K e. V )
lubprop.s
|- ( ph -> S e. dom U )
luble.x
|- ( ph -> X e. S )
Assertion luble
|- ( ph -> X .<_ ( U ` S ) )

Proof

Step Hyp Ref Expression
1 lubprop.b
 |-  B = ( Base ` K )
2 lubprop.l
 |-  .<_ = ( le ` K )
3 lubprop.u
 |-  U = ( lub ` K )
4 lubprop.k
 |-  ( ph -> K e. V )
5 lubprop.s
 |-  ( ph -> S e. dom U )
6 luble.x
 |-  ( ph -> X e. S )
7 breq1
 |-  ( y = X -> ( y .<_ ( U ` S ) <-> X .<_ ( U ` S ) ) )
8 1 2 3 4 5 lubprop
 |-  ( ph -> ( A. y e. S y .<_ ( U ` S ) /\ A. z e. B ( A. y e. S y .<_ z -> ( U ` S ) .<_ z ) ) )
9 8 simpld
 |-  ( ph -> A. y e. S y .<_ ( U ` S ) )
10 7 9 6 rspcdva
 |-  ( ph -> X .<_ ( U ` S ) )