Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lubprop.b | |- B = ( Base ` K ) |
|
lubprop.l | |- .<_ = ( le ` K ) |
||
lubprop.u | |- U = ( lub ` K ) |
||
lubprop.k | |- ( ph -> K e. V ) |
||
lubprop.s | |- ( ph -> S e. dom U ) |
||
luble.x | |- ( ph -> X e. S ) |
||
Assertion | luble | |- ( ph -> X .<_ ( U ` S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubprop.b | |- B = ( Base ` K ) |
|
2 | lubprop.l | |- .<_ = ( le ` K ) |
|
3 | lubprop.u | |- U = ( lub ` K ) |
|
4 | lubprop.k | |- ( ph -> K e. V ) |
|
5 | lubprop.s | |- ( ph -> S e. dom U ) |
|
6 | luble.x | |- ( ph -> X e. S ) |
|
7 | breq1 | |- ( y = X -> ( y .<_ ( U ` S ) <-> X .<_ ( U ` S ) ) ) |
|
8 | 1 2 3 4 5 | lubprop | |- ( ph -> ( A. y e. S y .<_ ( U ` S ) /\ A. z e. B ( A. y e. S y .<_ z -> ( U ` S ) .<_ z ) ) ) |
9 | 8 | simpld | |- ( ph -> A. y e. S y .<_ ( U ` S ) ) |
10 | 7 9 6 | rspcdva | |- ( ph -> X .<_ ( U ` S ) ) |