Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubprop.b | |- B = ( Base ` K ) | |
| lubprop.l | |- .<_ = ( le ` K ) | ||
| lubprop.u | |- U = ( lub ` K ) | ||
| lubprop.k | |- ( ph -> K e. V ) | ||
| lubprop.s | |- ( ph -> S e. dom U ) | ||
| luble.x | |- ( ph -> X e. S ) | ||
| Assertion | luble | |- ( ph -> X .<_ ( U ` S ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lubprop.b | |- B = ( Base ` K ) | |
| 2 | lubprop.l | |- .<_ = ( le ` K ) | |
| 3 | lubprop.u | |- U = ( lub ` K ) | |
| 4 | lubprop.k | |- ( ph -> K e. V ) | |
| 5 | lubprop.s | |- ( ph -> S e. dom U ) | |
| 6 | luble.x | |- ( ph -> X e. S ) | |
| 7 | breq1 | |- ( y = X -> ( y .<_ ( U ` S ) <-> X .<_ ( U ` S ) ) ) | |
| 8 | 1 2 3 4 5 | lubprop | |- ( ph -> ( A. y e. S y .<_ ( U ` S ) /\ A. z e. B ( A. y e. S y .<_ z -> ( U ` S ) .<_ z ) ) ) | 
| 9 | 8 | simpld | |- ( ph -> A. y e. S y .<_ ( U ` S ) ) | 
| 10 | 7 9 6 | rspcdva | |- ( ph -> X .<_ ( U ` S ) ) |